Документ подписан просто МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Информация о владельце: РОССИЙ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: МИТРОЗПЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Должность: Ректор

имени академика М. Д. Миллионщикова

Дата подписания: 15.11.2023 09:57:22

Уникальный программный ключ:

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

РАБОЧАЯ ПРОГРАММА

дисциплины «Теоретические основы электротехники»

Направление подготовки **13.03.02** Электроэнергетика и электротехника

Направленность (профиль) «Электропривод и автоматика»

Квалификация

Бакалавр

Год начала подготовки – 2023

1.Цели и задачи дисциплины

Цель данного курса состоит в том, чтобы дать студентам достаточно полное представление об электрических и магнитных цепях, и их составных элементах, их математических описаниях, основных методах анализа и расчета этих цепей в статических и динамических режимах работы, т.е. в создании научной базы для последующего изучения различных специальных электротехнических дисциплин.

Задачи курса заключаются в освоении теории физических явлений, положенных в основу создания и функционирования различных электротехнических устройств, а также в привитии практических навыков использования методов анализа и расчета электрических и магнитных цепей для решения широкого круга задач.

2. Место дисциплины в структуре ОП

1. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к части, блока 1 формируемая участниками образовательных отношений по направлению подготовки 13.03.02 Электроэнергетика и электротехника (квалификация «бакалавр»).

Предшествующие дисциплины, освоение которых необходимо для изучения данной дисциплины:

- ✓ физика;
- ✓ математика
- ✓ физические основы электротехники;
- ✓ учебная практика

Последующие дисциплины, для которых данная дисциплина является предшествующей:

- ✓ Электрические и электронные аппараты
- ✓ Система управления электроприводом
- ✓ Электрические машины

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине (ЗУВ)
	Общепрофессиональные	
ОПК-2 - способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач.	ОПК-2.2 - применяет физические законы и математические методы для решения задач теоретического и прикладного характера; ОПК-2.3 - выбирает методы моделирования и средства измерений для проведения экспериментальных исследований при решении профессиональных задач.	Знать: теоретические основы электротехники: основные понятия и законы электромагнитного поля и теории электрических и магнитных цепей Уметь:

ОПК-3.1 - использует методы анализа и моделирования линейных и нелинейных и постоянного и переменного тока

использовать законы и методы при изучении специальных электротехнических дисциплин

Владеть:

методами расчета и анализа цепей постоянного и переменного токов в стационарных и переходных режимах

4. Объем дисциплины и виды учебной работы

Таблица 2

	Всего					Семестр								
Вид уче	Вид учебной работы		часов/ зач.ед.		ОФО	ОЗФО	3ФО	ОФО	ОЗФО	3ФО	ОФО	ОЗФО	3ФО	
		ОФО	О3ФО	3ФО	3	3	3	4	4	4	5	5	5	
Контактна	я работа (всего)	200/5,6	100/2,8	40/1	68/1,89	34/0,94	14/0,34	64/1,78	32/0,89	12/0,33	68/1,89	34/0,94	14/0,34	
Вто	ом числе:													
Л	[екции	100/2,5	50/1,4	22/0,61	34/0,94	17/0,47	8/0,22	32/0,89	16/0,44	6/0,17	34/0,94	17/0,47	8/0,22	
Лаборато	орные работы	100/2,5	50/1,4	18/0,5	34/0,94	17/0,47	6/0,17	32/0,89	16/0,44	6/0,17	34/0,94	17/0,47	6/0,17	
Самостоятель	ьная работа (всего)	196/5,4	296/8,2	356/9,9	64/1,8	98/2,7	118/3,3	68/1,9	100/2,8	120/3,3	64/1,8	98/2,7	118/3,3	
Вто	ом числе:													
Расчетно-гра	фические работы				30/0,83	40/1,1	50/1,4	30/0,83	40/1,1	50/1,4	30/0,83	40/1,1	50/1,4	
Подготовка к ла	бораторным работам				34/0,94	40/1,1	50/1,4	38/1,05	401,1	50/1,4	34/0,94	40/1,1	50/1,4	
Подготовка і	к экзамену/зачету					18/0,5	18/0,5		20/0,6	20/0,6		18/0,5	18/0,5	
Вид о	тчетности	Зач/экз	Зач/экз	Зач/экз	Экз.	Экз.	Экз.	Зач.	Зач.	Зач.	Экз.	Экз.	Экз.	
Общая трудоемкость дисциплины	ВСЕГО в часах	396	396	396	132	132	132	132	132	132	132	132	132	

5.Содержание дисциплины 5.1. Содержание разделов дисциплины

Таблица 3

№ п/п	Наименование раздела	Лекц. зан. Лаб. зан. Часы Часы			Всего часов					
11/11	дисциплины	ОФО	ОЗФО	3ФО	ОФО	ОЗФО	3ФО	ОФО	ОЗФО	3ФО
				3-й семес	тр	l	I			
1.	Электрическое поле.	4	2		4	2		8	4	
2.	Электрические цепи постоянного тока.	6	4	4	6	4	2	12	8	6
3.	Расчет линейных электрических цепей постоянного тока.	6	2	2	6	2	2	12	4	4
4.	Методы расчета электрических цепей.	6	2		6	2	2	12	4	4
5.	Магнитное поле и его параметры. Магнитные цепи.	6	3	2	6	3	2	12	6	4
6.	Электромагнитная индукция.	6 34	4		6	4		12	8	
	Итого за 3-й семестр		17	8	34	17	6	68	34	14
			4	-й семес	тр	1	ı		1	
1.	Однофазные электрические цепи переменного тока.	6	2		6	2		12	4	
2.	Электрические цепи синусоидального тока. Элементы и параметры цепей синусоидального тока.	6	4	2	6	4	2	12	8	4
3.	Расчет неразветвленных электрических цепей синусоидального тока.	6	2	2	6	2	2	12	4	4
4.	Разветвленная цепь синусоидального тока.	2	2		2	2		4	4	
5.	Символический метод расчета электрических цепей переменного тока.	2	2	2	2	2	2	4	4	

6.	Электрические цепи с взаимной индуктивностью.	4	2		4	2		8	4	4
7.	Трехфазные цепи.	6	2		6	2		12	4	
	Итого за 4-й семестр	32	16	6	32	16	6	64	32	12
			5	-й семес	тр					
1.	Вращающееся магнитное.	4	2		4	2		8	4	
2.	Несинусоидальный ток.	4	2	2	4	2	2	8	4	
3.	Нелинейные электрические цепи переменного тока.	4	2	2	4	2	2	8	4	4
4.	Переходные процессы в электрических цепях.	6	3		6	3		12	6	
5.	Электрические цепи с распределенными параметрами.	4	2	4	4	2	2	8	4	6
6.	Четырехполюсник в цепях постоянного и переменного тока.	4	2		4	2		8	4	
7.	Круговые диаграммы.	4	2		4	2		8	4	
8.	Дифференцирование и интегрирование в переходных процессах.	4	2	2	4	2	2	8	4	4
	Итого за 5-й семестр	34	17	8	34	17	6	68 34 14		
	Итого	100	50	22	100	50	18	200	100	40

№ п/п	Наименование раздела дисциплины	Содержание раздела
		3-й семестр
1	Электрическое поле.	Электрический заряд. Напряженность электрического поля. Напряженность поля точечных зарядов. Теорема Гаусса. Потенциал и напряжение в электрическом поле. Электропроводность: Проводники. Диэлектрики. Полупроводники.
2	Электрические цепи постоянного тока	Электрическая цепь. Ток в электрической цепи. ЭДС и напряжение в электрической цепи. Закон Ома для участка цепи. Электрическое сопротивление. Закон Ома для замкнутой цепи. Энергия и мощность электрического тока. Режимы работы электрических цепей. Закон Джоуля — Ленца.
3	Расчет линейных электрических цепей постоянного тока	Режимы работы источников. Потенциальная диаграмма. СРС Законы Кирхгофа. Последовательное соединение потребителей. Потенциометр. СРСП потеря напряжения в проводах. СРСП параллельное соединение потребителей.
4	Методы расчета электрических цепей	Метод свертывания. Методпреобразования схем. Метод узлового напряжения. Параллельное соединение генераторов. Метод узловых и контурных уравнений. Метод эквивалентного генератора.
5	Магнитное поле и его параметры. Магнитные цепи.	Магнитное поле. Магнитная индукция. Магнитная проницаемость. Магнитный поток. Напряженность магнитного поля. Закон полного тока. Магнитное поле прямолинейного проводника с током. Магнитное поле кольцевой и цилиндрической катушек. Электромагнитная сила. Взаимодействие проводников с токами. Магнитная цепь. Закон Ома для магнитной цепи. Ферромагнитные материалы. Намагничивание ферромагнитных материалов. Циклическое перемагничивание.
6	Электромагнитная индукция	Явление и ЭДС электромагнитной индукции. Преобразование энергии. Правило Ленца. Преобразование механической энергии в электрическую. Преобразование электрической энергии в механическую. ЭДС электромагнитной индукции в контуре и катушке. Явление и ЭДС самоиндукции. Явление и ЭДС взаимоиндукции. Вихревые токи.
		4-й семестр
7	Однофазные электрические цепи переменного тока.	Основные понятия. Величины, характеризующие синусоидальную ЭДС. Среднее и действующее значения переменного тока. Векторные диаграммы. Сложение синусоидальных величин.
8	Электрические цепи синусоидального тока. Элементы и параметры цепей синусоидального тока	Цепь с активным сопротивлением.Поверхностный эффект и эффект близости.Цепь с идеальной индуктивностью. Цепь с емкостью.
9	Расчет неразветвленных электрических	Цепь с активным сопротивлением и индуктивностью. Цепь с активным сопротивлением и емкостью.

	цепей	Неразветвленная цепь с активным сопротивлением,
	синусоидального	индуктивностью и емкостью. Колебательный контур.
	тока	Резонанс напряжений. Общий случай неразветвленной цепи.
	Разветвленная цепь	Активный и реактивный токи. Проводимости.
10	синусоидального	Параллельное соединение катушкии конденсатора.
	тока.	Резонанс токов. Коэффициент мощности.
	Символический	* * * * * * * * * * * * * * * * * * * *
	метод расчета	Π.Υ
11	электрических	Действия над комплексными числами.Ток, напряжение и
	цепей переменного	сопротивлениев комплексном виде. Мощность в комплексном виде.
	тока.	
	Электрические цепи	
12	с взаимной	Переменная магнитная связь. Воздушный трансформатор.
	индуктивностью.	
		Трехфазная система ЭДС.Соединение обмоток генератора
		звездой. Соединение обмоток генератора треугольником.
13	Трехфазные цепи.	Соединение потребителей звездой.Соединение потребителей
		треугольником. Активная, реактивная и полная мощности
		трехфазной системы.Топографическая диаграмма.Преимущества
		трехфазных систем.
		5-й семестр
14	Вращающееся	Вращающееся магнитное поле трехфазного тока.
14	магнитное поле.	Вращающееся магнитное поле двухфазного тока. Пульсирующее магнитное поле.
		Основные понятия. Гармоники. Свойства периодических
	Несинусоидальный ток.	кривых. Несинусоидальный ток в линейных электрических
15		цепях.Действующее значение несинусоидальной величины.
	TOR	Мощность несинусоидального тока. Электрические фильтры.
		Нелинейные элементы.Выпрямители - источники
	Нелинейные	несинусоидального тока. Катушка с ферромагнитным
16	электрические цепи	сердечником. Мощность потерь. Векторная диаграмма
	переменного тока.	катушки со стальным сердечником. Схема замещения.
		Феррорезонанс.
	Переходные	
	процессы в	Основные понятия. Подключение катушки индуктивности
17	электрических	к источнику с постоянным напряжением. Отключение и замыкание
	цепях.	rl-цепи. Зарядка, разрядка и саморазрядка конденсатора.
	Четырехполюсник в	Общие сведения.Системы параметров.Системы уравнений,
10	цепях постоянного и	эквивалентные схемы, измерение параметров.Преобразование
18	переменного тока	параметров.Преобразования схем.Разновидности
	•	четырёхполюсников. Частные случаи четырёхполюсников.
	Vavroni io	Идеальный трансформатор.Гиратор.Нуллор.
19	Круговые диаграммы	Круговые диаграммы.
	Электрические цепи	Электрические цепи с распределенными параметрами.
20	с распределенными	электрические цени с распределенными нараметрами.
	параметрами	
	Дифференцирование	
	и интегрирование в	Сравнение различных методов расчета переходных процессов.
21	переходных	Переходные процессы при взаимодействии импульсов
	процессах.	напряжения. Обобщенные функции и их применение к расчету
	Canana	переходных процессов.
	Сравнение	

различных методов
расчета переходных
процессов.
Переходные
процессы при
взаимодействии
импульсов
напряжения.
Обобщенные
функции и их
применение к
расчету переходных
процессов.

5.3. Лабораторный практикум

Таблица 5

№ п/п	Наименование раздела дисциплины	Наименование лабораторных работ					
3-й семестр							
1	Электрические цепи постоянного тока	Исследование электрических цепей постоянного тока.					
2	Магнитное поле и его параметры. Магнитные цепи.	Исследование характеристик магнитного поля.					
3	Электромагнитная индукция	Изучение явления электромагнитной индукции.					
		4-й семестр					
4	Однофазные электрические цепи переменного тока.	Исследование цепей синусоидального тока.					
5	Разветвленная цепь синусоидального тока.	Исследование разветвленных электрических цепей переменного тока.					
6	Электрические цепи с взаимной индуктивностью.	Исследование цепей с взаимной индуктивностью.					
7	Трехфазные цепи.	Исследование цепей трехфазного переменного тока.					
		5-й семестр					
8	Несинусоидальный ток.	Несинусоидальный ток в линейных электрических цепях. Действующее значение несинусоидальной величины. Мощность несинусоидального тока. Электрические фильтры.					
9	Нелинейные электрические цепи переменного тока.	Исследование выпрямителей. Катушка с ферромагнитным сердечником. Феррорезонанс.					
10	Переходные процессы в	Подключение катушки индуктивности к источнику с постоянным напряжением. Отключение и					

	электрических цепях.	замыкание <i>rl</i> -цепи. Зарядка, разрядка и саморазрядка конденсатора.
11	Четырехполюсник в цепях постоянного и переменного тока	Исследование разновидностей четырехполюсников.

5.4. Практические занятия (семинары) – не предусмотрены

6. Самостоятельная работа студентов (СРС) по дисциплине

6.1.Тематика и формы самостоятельной работы студентов (доклад (реферат) +презентация)

Задания к расчетно-графической работе

- 1. Найти эквивалентное (общее) сопротивление электрической цепи.
- 2. Для электрической схемы, изображённой на рисунке по заданным сопротивлениям и э.д.с. выполнить следующее:
 - а. Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;
 - b. Найти все токи, пользуясь методом контурных токов;
 - с. Составить баланс мощностей для заданной схемы.
- 3. Для электрической схемы, изображённой на рисунке по заданным параметрам определить:
 - а. Токи во всех ветвях цепи и напряжения на отдельных участках.
 - b. Составить баланс активной и реактивной мощностей.
 - с. Построить в масштабе на комплексной плоскости векторную диаграмму токов.
- 4. Для трехфазной цепи с линейным напряжением U_a подключен трехфазный симметричный приемник, соединенный по схеме "треугольник", и группа однофазных приемников, соединенных по схеме "звезда" с нейтральным проводом. Сопротивление нейтрального провода пренебрежительно мало. Определить:
 - а. Токи в однофазных приёмниках соединённых по схеме "звезда";
 - b. Фазные и линейные токи приёмников, соединенных по схеме "треугольник";
 - с. Показания ваттметров и активную мощность трёхфазной цепи;
 - d. Построить векторные диаграммы напряжений и токов и по ним определить токи в линейных проводах и ток в нейтральном проводе.

Образец задания к РГР

Задача 1. Найти эквивалентное (общее) сопротивление электрической цепи

r1 = 2 Om; r2 = 1.3 Om; r3 = 5 Om; r4 = 7 Om; r5 = 3.7 Om; r6 = 10 Om; r7 = 9 Om; r8 = 11 Om; r9 = 9 Om; r10 = 3 Om; r11 = 4 Om.

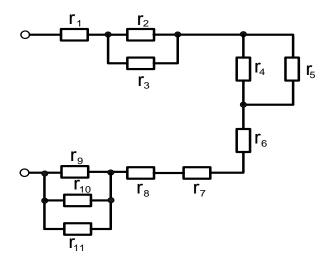


Рис. 1

Задача 2. Для электрической схемы изображённой на рисунке по заданным сопротивлениям и э.д.с. выполнить следующее:

- 1. Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;
- 2. Найти все токи, пользуясь методом контурных токов;
- 3. Составить баланс мощностей для заданной схемы.

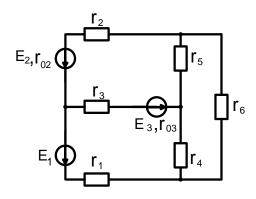
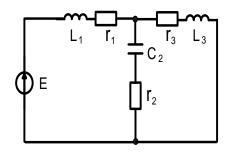



Рис. 2

$$\begin{split} E_1 &= 22 \; B \; ; \; E_2 = 24 \; B \; ; \; E_3 = 34 \; B \; ; \\ r_{02} &= 0.8 \; \text{Om} \; ; \; r_{03} = 0.93 \; \text{Om} \; ; \; r_1 = 3 \\ \text{Om} \; ; \; r_2 &= 3 \; \text{Om} \; ; \; r_3 = 4 \; \text{Om} \; ; \; r_4 = 4 \\ \text{Om} \; ; \; r_5 &= 6 \; \text{Om} \; ; \; r_6 = 4 \; \text{Om} \; . \end{split}$$

Задача 3. Для электрической схемы, изображённой на рисунке по заданным параметрам определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов.

E = 150 B ; $f = 50 \text{ }\Gamma\text{ц}$; $C_2 = 637 \text{ }$ мк Φ ; $L_1 = 25 \text{ }$ м ΓH ; $L_2 = 115 \text{ }$ м ΓH ; $r_1 = 2 \text{ }$ Ом ; $r_3 = 4 \text{ }$ Ом ; $r_3 = 3 \text{ }$ Ом .

Рис. 3

Учебно- методическое обеспечение самостоятельной работы студентов

- 1. Семенова, Н. Г. Теоретические основы электротехники. Часть 1 : учебное пособие к лабораторному практикуму / Н. Г. Семенова, Н. Ю. Ушакова, Н. И. Доброжанова. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2013. 106 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/30130.html
- 2. Баринов, И. Н. Сборник задач для углубленного изучения курса «Теоретические основы электротехники» : учебное пособие / И. Н. Баринов, В. Н. Енин, С. С. Николаев. Москва : Московский государственный технический университет имени Н.Э. Баумана, 2011. 72 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/31245.html
- 3. Нейман, В. Ю. Теоретические основы электротехники в примерах и задачах. Часть 1. Линейные электрические цепи постоянного тока : учебное пособие / В. Ю. Нейман. Новосибирск : Новосибирский государственный технический университет, 2011. 116 с. ISBN 978-5-7782-1796-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45172.html

7. Оценочные средства

Аттестационные вопросы

ОФО 3 семестр І рубежная аттестация

- 1. Электрический заряд.
- 2. Напряженность электрического поля.
- 3. Напряженность поля точечных зарядов.
- 4. Теорема Гаусса.
- 5. Потенциал и напряжение в электрическом поле.
- 6. Электропроводность: Проводники. Диэлектрики. Полупроводники.
- 7. Электрическая цепь.
- 8. Ток в электрической цепи.
- 9. ЭДС и напряжение в электрической цепи.

- 10. Закон Ома для участка цепи.
- 11. Электрическое сопротивление.
- 12. Закон Ома для замкнутой цепи.
- 13. Энергия и мощность электрического тока.
- 14. Режимы работы электрических цепей.
- 15. Закон Джоуля Ленца.
- 16. Режимы работы источников.
- 17. Потенциальная диаграмма. СРС
- 18. Законы Кирхгофа.
- 19. Последовательное соединениепотребителей. Потенциометр.
- 20. Потеря напряжения в проводах.
- 21. Параллельное соединение потребителей.

(Образец задания к аттестации) ОФО 3 семестр

3 семестр
1-я рубежная аттестация по дисциплине
«Теоретические основы электротехники»

Ф.И.О.

Вопросы:

- 1. Электрический заряд.
- 2. Ток в электрической цепи.
- 3. Электрическое сопротивление.

Зсеместр II рубежная аттестация

- 1. Метод свертывания.
- 2. Метод преобразования схем.
- 3. Метод узлового напряжения.
- 4. Параллельное соединение генераторов.
- 5. Метод узловых и контурных уравнений.
- 6. Метод эквивалентного генератора.
- 7. Магнитное поле.
- 8. Магнитная индукция.
- 9. Магнитная проницаемость.
- 10. Магнитный поток.
- 11. Напряженность магнитного поля.
- 12. Закон полного тока.
- 13. Магнитное поле прямолинейного проводника с током.
- 14. Магнитное поле кольцевой и цилиндрической катушек.
- 15. Электромагнитная сила.
- 16. Взаимодействие проводников с токами.
- 17. Магнитная цепь.
- 18. Закон Ома для магнитной цепи.
- 19. Ферромагнитные материалы.
- 20. Намагничивание ферромагнитных материалов.
- 21. Циклическое перемагничивание.
- 22. Явление и ЭДС электромагнитной индукции.
- 23. Преобразование энергии.
- 24. Правило Ленца.
- 25. Преобразование механической энергии в электрическую.
- 26. Преобразование электрической энергии в механическую.
- 27. ЭДС электромагнитной индукции в контуре и катушке.

- 28. Явление и ЭДС самоиндукции.
- 29. Явление и ЭДС взаимоиндукции.
- 30. Вихревые токи.

(Образец задания к аттестации) ОФО 3 семестр

2-я рубежная аттестация по дисциплине «Теоретические основы электротехники»

Φ.	И.	O.
Ψ.	ĸı.	v.

Вопросы:

- 1. Метод свертывания.
- 2. Магнитный поток.
- 3. Правило Ленца.

Вопросы к экзамену

3 семестр

- 1. Электрический заряд.
- 2. Напряженность электрического поля.
- 3. Напряженность поля точечных зарядов.
- 4. Теорема Гаусса.
- 5. Потенциал и напряжение в электрическом поле.
- 6. Электропроводность: Проводники. Диэлектрики. Полупроводники.
- 7. Электрическая цепь.
- 8. Ток в электрической цепи.
- 9. ЭДС и напряжение в электрической цепи.
- 10. Закон Ома для участка цепи.
- 11. Электрическое сопротивление.
- 12. Закон Ома для замкнутой цепи.
- 13. Энергия и мощность электрического тока.
- 14. Режимы работы электрических цепей.
- 15. Закон Джоуля Ленца.
- 16. Режимы работы источников.
- 17. Потенциальная диаграмма. СРС
- 18. Законы Кирхгофа.
- 19. Последовательное соединениепотребителей. Потенциометр.
- 20. Потеря напряжения в проводах.
- 21. Параллельное соединение потребителей.
- 22. Метод свертывания.
- 23. Метод преобразования схем.
- 24. Метод узлового напряжения.
- 25. Параллельное соединение генераторов.
- 26. Метод узловых и контурных уравнений.
- 27. Метод эквивалентного генератора.
- 28. Магнитное поле.
- 29. Магнитная индукция.
- 30. Магнитная проницаемость.
- 31. Магнитный поток.
- 32. Напряженность магнитного поля.
- 33. Закон полного тока.
- 34. Магнитное поле прямолинейного проводника с током.
- 35. Магнитное поле кольцевой и цилиндрической катушек.

- 36. Электромагнитная сила.
- 37. Взаимодействие проводников с токами.
- 38. Магнитная цепь.
- 39. Закон Ома для магнитной цепи.
- 40. Ферромагнитные материалы.
- 41. Намагничивание ферромагнитных материалов.
- 42. Циклическое перемагничивание.
- 43. Явление и ЭДС электромагнитной индукции.
- 44. Преобразование энергии.
- 45. Правило Ленца.
- 46. Преобразование механической энергии в электрическую.
- 47. Преобразование электрической энергии в механическую.
- 48. ЭДС электромагнитной индукции в контуре и катушке.
- 49. Явление и ЭДС самоиндукции.
- 50. Явление и ЭДС взаимоиндукции.
- 51. Вихревые токи.

(Образец билета к экзамену)

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени академика М.Д. Миллионщикова

БИЛЕТ № 1

Дисциплина «Теоретические основы электротехники»

Институт энергетики специальность <u>АНП-19</u> семестр <u>3</u>

- 1. Электрический заряд.
- 2. Законы Кирхгофа.
- 3. ЭДС электромагнитной индукции в контуре и катушке.

Аттестационные вопросы ОФО 4 семестр І рубежная аттестация

- 1. Величины, характеризующие синусоидальную ЭДС.
- 2. Среднее и действующее значения переменного тока.
- 3. Векторные диаграммы.
- 4. Сложение синусоидальных величин.
- 5. Цепь с активным сопротивлением.
- 6. Поверхностный эффект и эффект близости.
- 7. Цепь с идеальной индуктивностью.
- 8. Цепь с емкостью.
- 9. Цепь с активным сопротивлением и индуктивностью.
- 10. Цепь с активным сопротивлением и емкостью.
- 11. Неразветвленная цепь с активным сопротивлением, индуктивностью и емкостью. Колебательный контур.
- 12. Резонанс напряжений.
- 13. Общий случай неразветвленной цепи.

(Образец задания к аттестации) ОФО 4 семестр

4 семестр

1-я рубежная аттестация по дисциплине «Теоретические основы электротехники»

Ф.И.	O.
------	----

Вопросы:

- 1. Величины, характеризующие синусоидальную ЭДС.
- 2. Среднее и действующее значения переменного тока.
- 3. Векторные диаграммы.

4 семестр II рубежная аттестация

- 1. Активный и реактивный токи. Проводимости.
- 2. Параллельное соединение катушки и конденсатора.
- 3. Резонанс токов.
- 4. Коэффициент мощности.
- 5. Действия над комплексными числами.
- 6. Ток, напряжение и сопротивление в комплексном виде.
- 7. Мощность в комплексном виде.
- 8. Переменная магнитная связь.
- 9. Воздушный трансформатор.
- 10. Трехфазная система ЭДС.
- 11. Соединение обмоток генератора звездой.
- 12. Соединение обмоток генератора треугольником.
- 13. Соединение потребителей звездой.
- 14. Соединение потребителей треугольником.
- 15. Активная, реактивная и полная мощности трехфазной системы.
- 16. Топографическая диаграмма.
- 17. Преимущества трехфазных систем.

(Образец задания к аттестации) ОФО 4 семестр

2-я рубежная аттестация по дисциплине «Теоретические основы электротехники»

Ф.И.О.

Вопросы:

- 1. Активный и реактивный токи. Проводимости.
- 2. Параллельное соединение катушки и конденсатора.
- 3. Резонанс токов.

Вопросы к зачету

4 семестр

- 1. Величины, характеризующие синусоидальную ЭДС.
- 2. Среднее и действующее значения переменного тока.
- 3. Векторные диаграммы.
- 4. Сложение синусоидальных величин.
- 5. Цепь с активным сопротивлением.
- 6. Поверхностный эффект и эффект близости.
- 7. Цепь с идеальной индуктивностью.

- 8. Цепь с емкостью.
- 9. Цепь с активным сопротивлением и индуктивностью.
- 10. Цепь с активным сопротивлением и емкостью.
- 11. Неразветвленная цепь с активным сопротивлением, индуктивностью и емкостью. Колебательный контур.
- 12. Резонанс напряжений.
- 13. Общий случай неразветвленной цепи.
- 14. Активный и реактивный токи. Проводимости.
- 15. Параллельное соединение катушки и конденсатора.
- 16. Резонанс токов.
- 17. Коэффициент мощности.
- 18. Действия над комплексными числами.
- 19. Ток, напряжение и сопротивление в комплексном виде.
- 20. Мощность в комплексном виде.
- 21. Переменная магнитная связь.
- 22. Воздушный трансформатор.
- 23. Трехфазная система ЭДС.
- 24. Соединение обмоток генератора звездой.
- 25. Соединение обмоток генератора треугольником.
- 26. Соединение потребителей звездой.
- 27. Соединение потребителей треугольником.
- 28. Активная, реактивная и полная мощности трехфазной системы.
- 29. Топографическая диаграмма.
- 30. Преимущества трехфазных систем.

Аттестационные вопросы ОФО 5 семестр І рубежная аттестация

- 1. Вращающееся магнитное поле трехфазного тока.
- 2. Вращающееся магнитное поле двухфазного тока.
- 3. Пульсирующее магнитное поле.
- 4. Гармоники.
- 5. Свойства периодических кривых.
- 6. Несинусоидальный ток в линейных электрических цепях.
- 7. Действующее значение несинусоидальной величины.
- 8. Мощность несинусоидального тока.
- 9. Электрические фильтры.
- 10. Нелинейные элементы.
- 11. Выпрямители источники несинусоидального тока.
- 12. Катушка с ферромагнитным сердечником.
- 13. Мощность потерь.
- 14. Векторная диаграмма катушки со стальным сердечником.
- 15. Схема замещения.
- 16. Феррорезонанс.

(Образец задания к аттестации) ОФО 5 семестр

5 семестр 1-я рубежная аттестация по дисциплине «Теоретические основы электротехники»

Ф.И.О.			

Вопросы:

- 1. Нелинейные элементы.
- 2. Выпрямители источники несинусоидального тока.
- 3. Катушка с ферромагнитным сердечником.

5 семестр II рубежная аттестация

- 1. Подключение катушки индуктивности к источнику с постоянным напряжением.
- 2. Отключение и замыкание rl-цепи.
- 3. Зарядка, разрядка и саморазрядка конденсатора.
- 4. Системы параметров.
- 5. Системы уравнений, эквивалентные схемы, измерение параметров.
- 6. Преобразование параметров.
- 7. Преобразования схем.
- 8. Разновидности четырёхполюсников.
- 9. Частные случаи четырёхполюсников.
- 10. Идеальный трансформатор.
- 11. Гиратор.
- 12. Нуллор.
- 13. Круговые диаграммы
- 14. Электрические цепи с распределенными параметрами.
- 15. Сравнение различных методов расчета переходных процессов.
- 16. Переходные процессы при взаимодействии импульсов напряжения.
- 17. Обобщенные функции и их применение к расчету переходных процессов.

(Образец задания к аттестации) ОФО 5 семестр

2-я рубежная аттестация по дисциплине «Теоретические основы электротехники»

$\boldsymbol{\Delta}$	TI	\sim
(1)	1/1	()

Вопросы:

- 1. Отключение и замыкание rl-цепи.
- 2. Зарядка, разрядка и саморазрядка конденсатора.
- 3. Системы параметров.

Вопросы к экзамену

5 семестр

- 1. Вращающееся магнитное поле трехфазного тока.
- 2. Вращающееся магнитное поле двухфазного тока.
- 3. Пульсирующее магнитное поле.
- 4. Гармоники.
- 5. Свойства периодических кривых.
- 6. Несинусоидальный ток в линейных электрических цепях.
- 7. Действующее значение несинусоидальной величины.
- 8. Мощность несинусоидального тока.
- 9. Электрические фильтры.

- 10. Нелинейные элементы.
- 11. Выпрямители источники несинусоидального тока.
- 12. Катушка с ферромагнитным сердечником.
- 13. Мощность потерь.
- 14. Векторная диаграмма катушки со стальным сердечником.
- 15. Схема замещения.
- 16. Феррорезонанс.
- 17. Подключение катушки индуктивности к источнику с постоянным напряжением.
- 18. Отключение и замыкание rl-цепи.
- 19. Зарядка, разрядка и саморазрядка конденсатора.
- 20. Системы параметров.
- 21. Системы уравнений, эквивалентные схемы, измерение параметров.
- 22. Преобразование параметров.
- 23. Преобразования схем.
- 24. Разновидности четырёхполюсников.
- 25. Частные случаи четырёхполюсников.
- 26. Идеальный трансформатор.
- 27. Гиратор.
- 28. Нуллор.
- 29. Круговые диаграммы
- 30. Электрические цепи с распределенными параметрами.
- 31. Сравнение различных методов расчета переходных процессов.
- 32. Переходные процессы при взаимодействии импульсов напряжения.
- 33. Обобщенные функции и их применение к расчету переходных процессов.

(Образец билета к экзамену)

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени академика М.Д. Миллионщикова

БИЛЕТ № 1

Дисциплина «Теоретические основы электротехники»

Институт энергетики специальность АНП-19 семестр __5_

- 1. Вращающееся магнитное поле трехфазного тока.
- 2. Феррорезонанс.
- 3. Идеальный трансформатор.

7.4. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалы оценивания.

Таблица 7

Планируемые результаты освоения	Критерии оценивания результатов обучения			Наименование				
компетенции	менее 41 баллов	41-60 баллов	61-80 баллов	81-100 баллов	оценочного			
	(неудовлетворит	(удовлетворительно	(хорошо)	(отлично)	средства			
ОПК-2 - способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и								
экспериментального исследования при решении профессиональных задач								
Знать:	Фрагментарные	Неполные знания	Сформированные,	Сформированные	Комплект			
- основы применения, индикаторы и	знания		но содержащие	систематические	заданий для			
классификации, основные концепции			отдельные	знания	выполнения			
соответствующего физико-			пробелы знания		лабораторных			
математического аппарата, методов					работ, темы			
анализа и моделирования, теоретического и					докладов с			
экспериментального исследования при					презентациями, вопросы по			
решении профессиональных задач					темам / разделам			
решении профессиональных задач					дисциплины			
					диециплины			
Уметь:	Частичные	Неполные умения	Умения полные,	Сформированные				
- обоснованно и концептуально применять	умения		допускаются	умения				
соответствующий физико-математический			небольшие ошибки					
аппарат, использовать методы анализа и								
моделирования.								
1								

Владеть: — приемами монтажа электрооборудования в соответствии правил устройства электроустановок, также навыками наладки устройств автоматики.	Частичное владение навыками	Несистематическое применение навыков	В систематическом применении навыков допускаются пробелы	Успешное и систематическое применение навыков				
ОПК-3 - способен использовать методы анализа и моделирования электрический цепей и электрических машин.								
Знать: - принципиальные схемы вторичных цепей устройств релейной защиты, автоматики электроустановок и энергообъектов,	Фрагментарные знания	Неполные знания	Сформированные, но содержащие отдельные пробелы знания	Сформированные систематические знания	Комплект заданий для выполнения лабораторных работ, темы докладов с презентациями, вопросы по			
Уметь: проводить технико-экономическую оценку состояния электроэнергетических и электротехнических систем и их компонентов; использовать теоретические знания на практике при проектировании электроэнергетических и	Частичные умения	Неполные умения	Умения полные, допускаются небольшие ошибки	Сформированные умения				
Владеть: - базовыми знаниями в области электротехники и электроэнергетики; навыками использования основных методов расчета для проектирования электроэнергетических и электротехнических систем и их компонентов;	Частичное владение навыками	Несистематическое применение навыков	В систематическом применении навыков допускаются пробелы	Успешное и систематическое применение навыков	Частичное владение навыками			

8. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся созданы фонды оценочных средств, адаптированные для инвалидов и лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе. Форма проведения текущей аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При тестировании для слабовидящих студентов используются фонды оценочных средств с укруппенным шрифтом. На экзамен приглашается сопровождающий, который обеспечивает техническое сопровождение студенту. При необходимости студенту-инвалиду предоставляется дополнительное время для подготовки ответа на экзамене (или зачете). Обучающиеся с ограниченными возможностями здоровья и обучающиеся инвалиды обеспечиваются печатными и электронными образовательными ресурсами (программы, учебные пособия для самостоятельной работы и т.д.) в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для инвалидов и лиц с ограниченными возможностями здоровья по зрению:
- для слепых: задания для выполнения на семинарах и практических занятиях оформляются рельефно-точечным шрифтом Брайля или в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением для слепых, либо зачитываются ассистентом; письменные задания выполняются на бумаге рельефно-точечным шрифтом Брайля или на компьютере со специализированным программным обеспечением для слепых либо надиктовываются ассистенту; обучающимся для выполнения задания при необходимости предоставляется комплект письменных принадлежностей и бумага для письма рельефно-точечным шрифтом Брайля, компьютер со специализированным программным обеспечением для слепых;
- для слабовидящих: обеспечивается индивидуальное равномерное освещение не менее 300 люкс; обучающимся для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; задания для выполнения заданий оформляются увеличенным шрифтом;
- 2) для инвалидов и лиц с ограниченными возможностями здоровья по слуху:
- для глухих и слабослышащих: обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости обучающимся предоставляется звукоусиливающая аппаратура индивидуального пользования; предоставляются услуги сурдопереводчика;
- **для слепоглухих** допускается присутствие ассистента, оказывающего услуги тифлосурдопереводчика (помимо требований, выполняемых соответственно для слепых и глухих);
- 3) для лиц с тяжелыми нарушениями речи, глухих, слабослышащих лекции и семинары, проводимые в устной форме, проводятся в письменной форме;
- 4) для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата:
- для лиц с нарушениями опорно-двигательного аппарата, нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей: письменные задания выполняются на компьютере со специализированным программным обеспечением или надиктовываются ассистенту; выполнение заданий (тестов, контрольных работ), проводимые в письменной форме, проводятся в устной форме путем опроса, беседы с обучающимся.

9. Учебно-методическое и информационное обеспечение дисциплины:

- 1. Нейман, В. Ю. Теоретические основы электротехники в примерах и задачах. Часть 4. Линейные электрические цепи несинусоидального тока: учебное пособие / В. Ю. Нейман. Новосибирск: Новосибирский государственный технический университет, 2011. 182 с. ISBN 978-5-7782-1821-5. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/45175.html
- 2. Парамонова, В. И. Теоретические основы электротехники. Конспект лекций. Часть 1. Теория линейных и нелинейных электрических и магнитных цепей / В. И. Парамонова, А. С. Смирнов. Москва : Московская государственная академия водного транспорта, 2011. 113 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/47959.html
- 3. Горбунова, Л. Н. Теоретические основы электротехники / Л. Н. Горбунова, С. А. Гусева. Благовещенск: Дальневосточный государственный аграрный университет, 2015. 117 с. ISBN 978-5-9642-0269-1. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/55913.html
- 4. Крутов, А. В. Теоретические основы электротехники: учебное пособие / А. В. Крутов, Э. Л. Кочетова, Т. Ф. Гузанова. Минск: Республиканский институт профессионального образования (РИПО), 2016. 376 с. ISBN 978-985-503-580-1. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/67742.html
- 5. Теоретические основы электротехники. Часть 1. Установившиеся режимы в линейных электрических цепях : учебное пособие / В. М. Дмитриев, А. В. Шутенков, В. И. Хатников [и др.]. Томск : Томский государственный университет систем управления и радиоэлектроники, 2015. 189 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/72189.html
- 6. Дудченко, О. Л. Теоретические основы электротехники : учебно-методическое пособие / О. Л. Дудченко. Москва : Издательский Дом МИСиС, 2017. 60 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/78528.html
- 7. Дудченко, О. Л. Теоретические основы электротехники. Часть 2 : лабораторный практикум / О. Л. Дудченко, Г. Б. Федоров. Москва : Издательский Дом МИСиС, 2017. 78 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/78529.html

Методические указания по освоению дисциплины «Теоретические основы электротехники» (Приложение)

- 10. Материально-техническое обеспечение дисциплины
- 10.1. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине
 - 1. Лабораторные аудитории с реальным оборудованием.
 - 2. Классы с персональными компьютерами (ПК) для проведения групповых занятий (две подгруппы по 10-12 студентов на одного преподавателя).

Программное обеспечение:

- 1. программный математический комплекс *Mathcad*;
- 2. математический пакет *MathLab*.

10.2. Помещения для самостоятельной работы

Учебная аудитория для самостоятельной работы – 1-29.

Методические указания по освоению дисциплины *«Теоретические основы электротехнки»*

1. Методические указания для обучающихся по планированию и организации времени, необходимого для освоения дисциплины.

Изучение рекомендуется начать с ознакомления с рабочей программой дисциплины, ее структурой и содержанием разделов (модулей), фондом оценочных средств, ознакомиться с учебно-методическим и информационным обеспечением дисциплины.

Дисциплина «<u>Теоремические основы электромехники</u>» состоит из <u>21</u> связанных между собою тем, обеспечивающих последовательное изучение материала. Обучение по дисциплине «Теоретические основы электротехники»

осуществляется в следующих формах:

- 1. Аудиторные занятия (лекции, лабораторные работы).
- 2. Самостоятельная работа студента (подготовка к лекциям, <u>лабораторным</u> занятиям, <u>тестам</u>, <u>докладам с видео</u>, и иным формам письменных работ.

Учебный материал структурирован и изучение дисциплины производится в тематической последовательности. Каждому <u>лабораторному занятию</u> и самостоятельному изучению материала предшествует лекция по данной теме. Обучающиеся самостоятельно проводят предварительную подготовку к занятию, принимают активное и творческое участие в обсуждении теоретических вопросов, разборе проблемных ситуаций и поисков путей их решения. Многие проблемы, изучаемые в курсе, носят дискуссионный характер, что предполагает интерактивный характер проведения занятий на конкретных примерах.

Описание последовательности действий обучающегося:

При изучении дисциплины следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:

- 1. После окончания учебных занятий для закрепления материала просмотреть и обдумать текст лекции, прослушанной сегодня, разобрать рассмотренные примеры (10-15 минут).
- 2. При подготовке к лекции следующего дня повторить текст предыдущей лекции, подумать о том, какая может быть следующая тема (10 15 минут).
- 3. В течение недели выбрать время для работы с литературой в библиотеке (по 1 часу).
- 4. При подготовке к <u>лабораторному занятию</u> повторить основные понятия по теме, изучить примеры. Решая конкретную ситуацию, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить 1 2 практические ситуации (лаб. работы).

2. Методические указания по работе обучающихся во время проведения лекций.

Лекции дают обучающимся систематизированные знания по дисциплине, концентрируют их внимание на наиболее сложных и важных вопросах. Лекции обычно излагаются в традиционном или в проблемном стиле. Для студентов в большинстве случаев в проблемном стиле. Проблемный стиль позволяет стимулировать активную познавательную деятельность обучающихся и их интерес к дисциплине, формироватьтворческое мышление, прибегать к противопоставлениям и сравнениям, делать обобщения, активизировать внимание обучающихся путем постановки проблемных вопросов, поощрять дискуссию.

Во время лекционных занятий рекомендуется вести конспектирование учебного материала, обращать внимание на формулировки и категории, раскрывающие суть того или иного явления, или процессов, выводы и практические рекомендации.

Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, которые делает преподаватель, отмечая наиболее важные моменты в лекционном материале замечаниями

«важно», «хорошо запомнить» и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения.

Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста.

Работая над конспектом лекций, необходимо использовать не только основную литературу, но и ту литературу, которую дополнительно рекомендовал преподаватель. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

Тематика лекций дается в рабочей программе дисциплины.

3. Методические указания обучающимся по подготовке к практическим/семинарским занятиям.

Студенту рекомендуется следующая схема подготовки к семинарскому занятию:

- 1. Ознакомление с планом <u>лабораторного</u> занятия, который отражает содержание предожнитемы;
 - 2. Проработать конспект лекций;
 - 3. Прочитать основную и дополнительную литературу.
- В процессе подготовки к лабораторным занятиям, необходимо обратить особое внимание на самостоятельное изучение рекомендованной литературы. При всей полноте конспектирования лекции в ней невозможно изложить весь материал из-за лимита аудиторных часов. Поэтому самостоятельная работа с учебниками, учебными пособиями, научной, справочной литературой, материалами периодических изданий и Интернета является наиболее эффективным методом получения дополнительных знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов отношение кконкретной проблеме. Все новые понятия по изучаемой теме необходимо выучить наизусть и внести в глоссарий, который целесообразно вести с самого начала изучения дисциплины;
 - 4. Ответить на вопросы плана лабораторного занятия;
 - 5. При затруднениях сформулировать вопросы к преподавателю.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, выступать и участвовать в коллективном обсуждении вопросов изучаемой темы, правильно выполнять практические задания и иные задания, которые даются в фонде оценочных средств дисциплины.

3. Методические указания обучающимся по организации самостоятельной работы.

Цель организации самостоятельной работы по дисциплине <u>Теоретические основы</u> <u>электротехники</u> - это углубление и расширение знаний в области <u>электротехники</u>; формирование навыка и интереса к самостоятельной познавательной деятельности.

Самостоятельная работа обучающихся является важнейшим видом освоения содержания дисциплины, подготовки к практическим занятиям и к контрольной работе. Сюда же относятся и самостоятельное углубленное изучение тем дисциплины. Самостоятельная работа представляет собой постоянно действующую систему, основу образовательного процесса и носит исследовательский характер, что послужит в будущем основанием для написания выпускной квалификационной работы, практического применения полученных знаний.

Организация самостоятельной работы обучающихся ориентируется на активные методы овладения знаниями, развитие творческих способностей, переход от поточного к индивидуализированному обучению, с учетом потребностей и возможностей личности.

Правильная организация самостоятельных учебных занятий, их систематичность, целесообразное планирование рабочего времени позволяет студентам развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивать высокий уровень успеваемости в период обучения, получить навыки повышения профессионального уровня.

Подготовка к практическому занятию включает, кроме проработки конспекта и презентации лекции, поиск литературы (по рекомендованным спискам и самостоятельно),

подготовку заготовок для выступлений по вопросам, выносимым для обсуждения по конкретной теме. Такие заготовки могут включать цитаты, факты, сопоставлениеразличных позиций, собственные мысли. Если проблема заинтересовала обучающегося, он может подготовить реферат и выступить с ним на практическом занятии. Практическоезанятие - это, прежде всего, дискуссия, обсуждение конкретной ситуации, то есть предполагает умение внимательно слушать членов малой группы и модератора, а также стараться высказать свое мнение, высказывать собственные идеи и предложения, уточнять и задавать вопросы коллегам по обсуждению.

При подготовке к контрольной работе обучающийся должен повторять пройденный материал в строгом соответствии с учебной программой, используя конспект лекций и литературу, рекомендованную преподавателем. При необходимости можно обратиться за консультацией и методической помощью к преподавателю.

Самостоятельная работа реализуется:

- непосредственно в процессе аудиторных занятий на лекциях, лабораторных занятиях;
- в контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- в библиотеке, дома, на кафедре при выполнении обучающимся учебных и практических задач.

Виды СРС и критерии оценок

(по балльно-рейтинговой системе ГГНТУ, СРС оценивается в 15 баллов)

- 1. Доклад
- 2. Участие в мероприятиях

Темы для самостоятельной работы прописаны в рабочей программе дисциплины. Эффективным средством осуществления обучающимся самостоятельной работы

является электронная информационно-образовательная среда университета, которая обеспечивает доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем.

Составитель:

Доцент кафедры «Электротехника и электропривод»

/Р.А-М. Магомадов /

СОГЛАСОВАНО:

Зав. кафедрой «Электротехника и электропривод»

for /P.A

/Р.А-М. Магомалов /

Директор ДУМР

aple

/М.А. Магомаева /