Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Магми НИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор ЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ Дата подписания: 18.11.2023 16.13.01 УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ГРОЗНЕНСКИЙ Уникальный программный ключ: 1.1.1.2023 16.13.01 УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ГРОЗНЕНСКИЙ УНИКАЛЬНЫЙ ПРОТРЕМЕНТИИ ОБРАЗОВСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАЛЕМИКА М.Д.МИЛЛИОНЩИКОВА»

Прикладная геофизика и геоинформатика

УТВЕРЖДЕН
на заседании кафедры
«_01_»__09__2023 г., протокол №_1
Заведующий кафедрой
______А.С. Эльжаев
(подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

"ПЕТРОФИЗИКА"

Специальность

21.05.03 «Технология геологической разведки»

Специализация

"Геофизические методы исследования скважин"

Квалификация выпускника

горный инженер-геофизик

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Петрофизика

(наименование дисциплины)

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного
		(или ее части)	средства
1	Введение. Неоднородность, дисперсность, межфазная поверхность пород и их характеристики	ПК-1, ПК-5	
	Глинистость. Пористость,	ПК-1, ПК-5	
2	структура порового пространства		Текущий
3	Влажность, влагоёмкость, двойной слой	ПК-1, ПК-5	контроль Рубежный
	Плотность горных пород	ПК-1, ПК-5	контроль
4	Проницаемость горных пород	ПК-1, ПК-5	
5	Электрические свойства горных пород	ПК-1, ПК-5	
6	Диффузионно-адсорбционная активность горных пород	ПК-1, ПК-5	
7	Магнитные свойства горных пород	ПК-1, ПК-5	Текущий
8	Тепловые свойства горных пород	ПК-1, ПК-5	контроль Рубежный
9	Естественная радиоактивность горных пород	ПК-1, ПК-5	контроль
10	Нейтронные свойства горных пород	ПК-1, ПК-5	
11	Упругие свойства пород	ПК-1, ПК-5	Лабораторная работа

ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	Текущий контроль	Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде собеседования преподавателя с обучающимися.	Вопросы по разделам дисциплины
2	Рубежная контроль	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу учебной дисциплины.	Вопросы/билеты по темам / разделам дисциплины для первой и второй рубежных аттестаций.
3	Лабораторная рабо т а Реферат	Продукт самостоятельной работы студента, представляющий собой публичное выступление. По решению определенной учебнопрактической, учебноисследовательской или научной темы.	Задания для выполнения лабораторных работ. Темы рефератов.

ТЕКУЩИЙ КОНТРОЛЬ

Задания:

- 11. Упругие свойства горных пород
- 2. УЭС водонасыщенных карбонатных пород со сложным строением порового пространства
- 3. Физические свойства г/п в зонах АВПД
- 4. Диффузионно-адсорбционная активность горных пород
- 5. Деформация г/п. и изменение скорости распространения продольных волн

Критерии оценки:

Регламентом БРС предусмотрено 15 баллов за текущий контроль. Критерии оценки разработаны, исходя из разделения баллов: первые три работы на каждую аттестацию по 4 балла и на четвертую работу- 3 балла.

РУБЕЖНЫЙ КОНТРОЛЬ

Вопросы к первой рубежной аттестации

- 1. Что понимается под экстрагированием.
- 2. Описание и работа аппарата Сокслета.
- 3. Описание и работа аппарата Дина и Старка.
- 4. Каким условиям должны отвечать растворители, применяемые в аппаратах Дина и Старка.

- 5. Для чего используются значения Кн. Кв, Кг.
- 6.Расчет коэффициента нефтеводонасыщенности.
- 7. Что понимается под пористостью пород.
- 8. Что характеризует коэффициент открытой пористости пород.
- 9. Чем отличается открытая пористость от пористости эффективной.
- 10.В чем заключается практическое значение сведений об открытой пористости пород.
- 11. Какие виды пористости различают.
- 12. Что характеризует коэффициент общей пористости пород.
- 13. Как определяется плотность твердой фазы.
- 14. Как определяется плотность сухого образца породы.
- 15. Какие факторы влияют на формирование общей пористости.
- 16. Какие факторы определяют структуру порового пространства.
- 17. Способы добычи полезных ископаемых и обоснования строительства фундаментов под крупные сооружения.
- 18. Вещественная, структурная и фазовая неоднородность пород, причины возникновения.
- 19. Уровни и характеристики неоднородности.
- 20. Состав и распределение глинистого материала в осадочных
- 21. Количественные характеристики глинистости. Удельные поверхность: полная (адсорбционная), гранулометрическая, каналов фильтрации (фильтрационная).
- 22. Обменная емкость как параметр, характеризующий дисперсность пород. Определение емкости катионного обмена и удельной поверхности.
- 23. Понятие пористости. Происхождение, форма, размеры и взаимосвязь пор, трещин и каверн.
- 24. Пористость глин и глинистых пород. Связь глинистости и пористости. Эффективная, динамическая и общая (абсолютная) пористости.
- 25. Структура порового пространства, способы ее количественного описания, методы изучения.
- 26. Вторичная пористость. Связь пористости с другими петрофизическими характеристиками.
- 27. Влажность и влагоёмкость. полная влагоёмкость, межфазное взаимодействие. Адсорбция и катионный обмен.
- 28. Влагоёмкость капиллярная, гигроскопическая, "подвешенная", полная. Вода химически связанная, кристаллизационная и конституционная.
- 29. Способы определения содержания различных форм воды (свободной, физически и химически связанной). Нефте- и газонасыщенность пород.
- 30. Определение и практическое значение плотности. Связь плотности пород с плотностью их фаз, коэффициентами пористости и влажности.
- 31. Плотность пород в сухом и влажном состояниях. Зависимость плотности от температуры, давления, времени и условий залегания пород. Экспериментальные связи плотности с другими свойствами пород. Классификация пород по плотности.
- 32. Проницаемость абсолютная, фазовая и относительная. Зависимость коэффициента проницаемости от коэффициента пористости, удельной поверхности, среднего диаметра зерен и пор.
- 33. Пределы изменения, характер распределения и классификация коэффициентов проницаемости для различных пород.
- 34. Коллекторы, их классификация по гранулометрическому составу, коэффициентам динамической пористости и проницаемости (основные сведения), динамической пористости и проницаемости (основные сведения).

Образцы вариантов для проведения 1 рубежной аттестации

Грозненский государственный нефтяной технический университет

Вариант 1

для 1 рубежной аттестации Дисциплина «Петрофизика» ИНГ специальность НИ семестр 5

1	Расчет	коэффиц	иента нес	bтеводон:	асыщенности	
- '				p		•

2. Влажность и влагоёмкость. полная влагоёмкость, межфазное взаимодействие.

Доцент Хасанов М.А.

Грозненский государственный нефтяной технический университет

Вариант 2

для 1 рубежной аттестации Дисциплина «Петрофизика» ИНГ специальность НИ семестр 5

- 1. Какие виды пористости различают.
- 2. Количественные характеристики глинистости.

Доцент Хасанов М.А.

Грозненский государственный нефтяной технический университет

Вариант 3

для 1 рубежной аттестации

Дисциплина «Петрофизика»

ИНГ специальность НИ семестр 5

- 1. Расчет коэффициента нефтеводонасыщенности.
- 2. Плотность пород в сухом и влажном состояниях..

Доцент Хасанов М.А.

Вопросы ко второй рубежной аттестации

- 1. Что понимается под карбонатностью пород и для чего ее определяют.
- 2. Как карбонатность влияет на коллекторские и другие свойства пород.
- 3.В каких случаях применяется газометрический способ определения карбонатности пород.
- 4. Что понимается под проницаемостью г/и. Виды проницаемости г/п.
- 5.В каких единицах измеряется проницаемость. Каково соотношение между ними.
- 6.Почему уд.сопротивлене растворов зависит от химического составарастворенных веществ.
- 7. Почему и как зависит сопротивление раствора от температуры.
- 8. Какие условия являются необходимыми для возникновения диффузионных ЭДС.
- 9.От чего зависит величина диффузионной ЭДС.
- 10. Чему равен коэффициент диффузионной ЭДС и от чего он зависит.
- 11. Теоретические основы физических и физико-химических явлений, определяющих электропроводность, диэлектрические свойства, окислительно-восстановительную,

диффузионно-адсорбционную и фильтрационную активности пород.

- 12. Факторы, ее определяющие, пределы изменения, способы определения. Связи с коллекторскими и другими свойствами пород.
- 13. Зависимость диффузионно-адсорбционной активности от температуры и давления по теоретическим и экспериментальным данным. Фильтрационные потенциалы и фильтрационная активность пород.
- 14. Радиоактивные элементы и радиоактивность природных вод и минералов. Классификация минералов по величине и гамма активности.
- 15. Энергетический спектр гамма излучения пород и его использование для определения радиоактивных элементов, присутствующих в породе.
- 16. Радиоактивные минералы и радиоактивность магматических, метаморфических и осадочных пород. Связь гамма активности с другими петрофизическими характеристиками.
- 17. Определение радиоактивности горных пород.
- 18. Нейтронные эффективные сечения, зависимость их от энергии нейтронов, химического состава (в частности, от водородо- и хлоросодержания) плотности и других свойств пород.
- 19. Комплексные параметры, характеризующие интенсивность взаимодействия нейтронов с породами (замедляющая способность, длины замедления и диффузии, время жизни тепловых нейтронов и нейтронная поглощающая активность).
- 20. Скорость распространения упругих волн в идеально упругих сплошных средах. Коэффициенты упругости минералов, скорости распространения в них упругих волн. Особенности распространения упругих волн в горных породах.
- 21 .Коэффициенты упругости пород и скорость распространения в них упругих волн по теоретическим и экспериментальным данным; зависимость скорости от коэффициентов упругости, соотношения фаз, от плотности, пористости, глинистости, температуры, давления, возраста и литологического состава пород.
- 22.Поглощение упругих волн в горных породах. Коэффициенты поглощения упругих волн и их зависимости от вещественного, фазового состава, структуры пород, температуры, частоты колебания.

Образцы вариантов для проведения 2 рубежной аттестации

Грозненский государственный нефтяной технический университет

Вариант 1

для 1 рубежной аттестации
Дисциплина «Петрофизика»
ИНГ специальность НИ семестр 5

1. Что понимается под карбонатностью пород и для чего ее определяют.
2.Определение радиоактивности горных пород.

Грозненский государственный нефтяной технический университет **Вариант 2**

для 1 рубежной аттестации

Дисциплина «Петрофизика» ИНГ специальность НИ семестр 5

1. ^t	Іто	понимается	под прониц	аемостью г/	⁄и. Виды	проницаемости	и г∕п.
-----------------	-----	------------	------------	-------------	----------	---------------	--------

2. Факторы, ее определяющие, пределы изменения, способы определения

Доцент Хасанов М.А.

Грозненский государственный нефтяной технический университет

Вариант 3

для 1 рубежной аттестации
Дисциплина «Петрофизика»

ИНГ специальность НИ семестр 5

- 1.От чего зависит величина диффузионной ЭДС.
- 2. Особенности распространения упругих волн в горных породах.

Доцент______Хасанов М.А.

Критерии оценки знаний студентов при проведении аттестации по дисциплине «Петрофизика»

Максимальное возможное количество набранных баллов в соответствии с БРС при проведении рубежных аттестации 20 баллов. Количество набранных студентом баллов при проведении рубежной аттестации, зависит от количества правильных ответов. Контрольная работа пишется по вариантам. В каждом варианте по два вопроса из перечисленных выше. Правильный ответ на 1 и 2 вопросы соответствует 10 баллов за каждый вопрос.

Самостоятельная работа студентов по дисциплине:

Программой предусматривается самостоятельное освоение части разделов курса с помощью рекомендуемой литературы. Студенты должны работать с имеющимися учебниками, учебным пособием и конспектами лекций.

Работа с литературой является одним из основных видов самостоятельной деятельности студентов. Рекомендуемую основную литературу нужно получить в библиотеке. Самостоятельная работа студентов во многом может быть облегчена использованием интернета. На самостоятельное изучение (более детальную проработку) выносятся темы, частично рассмотренные в лекциях. Часть тем студенты рассматривают самостоятельно.

Темы для написания рефератов

- 1. Упругие свойства горных пород
- 2.УЭС водонасыщенных карбонатных пород со сложным строением порового пространства
 - 3. Физические свойства г/п в зонах АВПД
 - 4. Диффузионно-адсорбционная активность горных пород
 - 5. Деформация г/п. и изменение скорости распространения продольных волн

Критерии оценки

Регламентом БРС предусмотрено 15 баллов за самостоятельную работу студента. 0 баллов выставляется студенту, если подготовлен некачественный реферат, отсутствует четкая структура, логическая последовательность. Не отражено умение работать с литературой и нет систематизации материала. Студент показал разрозненные знания по теме исследования с существенными ошибками в определениях, присутствует фрагментальность, нелогичность изложения.

- 1-2 балла выставляется студенту, если основная идея реферата поверхностная или заимствована. Работа не обладает информационно-образовательными достоинствами. Отсутствует четкая структура, отражающая сущность раскрываемой темы. Логика и последовательность изложения имеют нарушения. Допущены ошибки в раскрытии вопроса и в употреблении научных терминов. Студент затрудняется с выводами по исследуемой работе.
- 3-5 баллов выставляется студенту, если основная идея реферата очевидна, но слишком проста или неоригинальна, механические и технические ошибки значительны. Студент затрудняется с выводами по исследуемой работе. Не достаточно последовательно изложен материал, но при этом показано умение выделить существенные и несущественные моменты при работе с литературой.
- 6-8 баллов выставляется студенту, если идея ясна, но возможно шаблонна. Работа оформлена некачественно, имеются методические и технические ошибки. Показано умение выделить существенные и несущественные моменты в исследуемом материале. Выводы сделаны некорректно. При защите реферата студент не показал глубоких знаний материала, давал сбивчивые ответы на дополнительные вопросы преподавателя.
- 9-11 баллов выставляется студенту, если основная идея содержательна. Работа оформлена хорошо, традиционно. Прослеживается структура реферата и логичность в изложении, отражающая сущность раскрываемой темы, но при этом допущены недочеты, исправленные студентом с помощью преподавателя. В выводах допущены незначительные ошибки. При защите реферата студент излагает материал неполно и допускает неточности в определении понятий или формулировке теории. Не умеет достаточно глубоко и доказательно обосновать свои суждения. Излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.
- 12-14 баллов выставляется студенту, если основная идея содержательна. Работа оформлена хорошо, традиционно. Прослеживается структура реферата и логичность в изложении, отражающая сущность раскрываемой темы, но при этом допущены недочеты, исправленные студентом с помощью преподавателя. В выводах допущены незначительные ошибки. При защите реферата студент полно излагает изученный материал, даёт правильное определение, обнаруживает понимание материала, может обосновать свои суждения, но при этом допустил 1-2 ошибки, которые сам же исправил и 1-2 недочёта в последовательности и языковом оформлении излагаемого.
- 15 баллов выставляется студенту, если ключевая идея отражает глубокое понимание, содержание работы соответствует теме; работа оформлена с высоким качеством, оригинально. Студент показал совокупность осознанных знаний, умение выделить существенные и несущественные моменты в исследуемом материале. Выводы корректны и обоснованы. При защите реферата студент полно излагает изученный материал, даёт правильные определения понятий. Обнаруживает понимание материала, может обосновать свои суждения. Излагает материал последовательно и правильно с точки зрения норм научного языка.

- 1. Способы добычи полезных ископаемых и обоснования строительства фундаментов под крупные сооружения.
- 2. Вещественная, структурная и фазовая неоднородность пород, причины возникновения.
 - 3. Уровни и характеристики неоднородности.
 - 4. Состав и распределение глинистого материала в осадочных породах.
- 5. Количественные характеристики глинистости. Удельные поверхность: полная (адсорбционная), гранулометрическая, каналов фильтрации (фильтрационная).
- 6. Обменная емкость как параметр, характеризующий дисперсность пород. Определение емкости катионного обмена и удельной поверхности.
- 7. Понятие пористости. Происхождение, форма, размеры и взаимосвязь пор, трещин и каверн.
- 8. Пористость глин и глинистых пород. Связь глинистости и пористости. Эффективная, динамическая и общая (абсолютная) пористости.
- 9. Структура порового пространства, способы ее количественного описания, методы изучения.
- 10. Вторичная пористость. Связь пористости с другими петрофизическими характеристикам.
- 11. Влажность и влагоёмкость, полная влагоёмкость, межфазное взаимодействие. Адсорбция и катионный обмен.
- 12. Влагоёмкость капиллярная, гигроскопическая, "подвешенная", полная. Вода химически связанная, кристаллизационная и конституционная.
- 13. Способы определения содержания различных форм воды (свободной, физически и химически связанной). Нефте- и газонасыщенность пород.
- 14. Определение и практическое значение плотности. Связь плотности пород с плотностью их фаз, коэффициентами пористости и влажности.
- 15. Плотность пород в сухом и влажном состояниях. Зависимость плотности от температуры, давления, времени и условий залегания пород. Экспериментальные связи плотности с другими свойствами пород. Классификация пород по плотности.
- 16. Проницаемость абсолютная, фазовая и относительная. Зависимость коэффициента проницаемости от коэффициента пористости, удельной поверхности, среднего диаметра зерен и пор.
- 17. Пределы изменения, характер распределения и классификация коэффициентов проницаемости для различных пород.
- 18. Коллекторы, их классификация по гранулометрическому составу, коэффициентам динамической пористости и проницаемости (основные сведения).
- 19. Теоретические основы физических и физико-химических явлений, определяющих электропроводность, диэлектрические свойства, окислительновосстановительную, диффузионно-адсорбционную и фильтрационную активности пород.
- 20. Факторы, ее определяющие, пределы изменения, способы определения. Связи сколлекторскими и другими свойствами пород.
- 21. Зависимость диффузионно-адсорбционной активности от температуры и давления по теоретическим и экспериментальным данным. Фильтрационные потенциалы и фильтрационная активность пород.
- 22. Радиоактивные элементы и радиоактивность природных вод и минералов. Классификация минералов по величине и гамма активности.

- 23. Энергетический спектр гамма излучения пород и его использование для определения радиоактивных элементов, присутствующих в породе.
- 24. Радиоактивные минералы и радиоактивность магматических, метаморфических и осадочных пород. Связь гамма активности с другими петрофизическими характеристикам и.
 - 25. Определение радиоактивности горных пород.
- 26. Нейтронные эффективные сечения, зависимость их от энергии нейтронов, химического состава (в частности, от водородо- и хлоросодержания) плотности и других свойств пород.
- 27. Комплексные параметры, характеризующие интенсивность взаимодействия нейтронов с породами (замедляющая способность, длины замедления и диффузии, время жизни тепловых нейтронов и нейтронная поглощающая активность).
- 28. Скорость распространения упругих волн в идеально упругих сплошных средах. Коэффициенты упругости минералов, скорости распространения в них упругих волн. Особенности распространения упругих волн в горных породах.
- 29. Коэффициенты упругости пород и скорость распространения в них упругих волн по теоретическим и экспериментальным данным; зависимость скорости от коэффициентов упругости, соотношения фаз, от плотности, пористости, глинистости, температуры, давления, возраста и литологического состава пород.
- 30..Поглощение упругих волн в горных породах. Коэффициенты поглощения упругих волн и их зависимости от вещественного, фазового состава, структуры пород, температуры, частоты колебания.

Образцы билетов на экзамен

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ БИЛЕТ № 1

дисциплина Петрофизика

Кафедра «Прикладная геофизика и геоинформатика» семестр 5

 Уровни и характеристики неоднородности 	1.	. }	y 1	pol	вни	И	xa	pai	(Te	g	ис	гики	не	ОД	(HO	po	Л	HC	СТ	И	
--	----	-----	------------	-----	-----	---	----	-----	-----	---	----	------	----	----	-----	----	---	----	----	---	--

2. Коэффициенты	і упруго	сти пород и	і скорость	распрост	гранения
-----------------	----------	-------------	------------	----------	----------

УТВЕРЖДАЮ:			
«»	_20	Γ.	Зав. кафедрой

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ БИЛЕТ № 2

дисциплина Петрофизика

Кафедра «Прикладная геофизика и геоинформатика» семестр 5

- 1. Плотность пород в сухом и влажном состояниях.
- 2. Радиоактивные минералы и радиоактивность магматических, метаморфических и осадочных пород.

УТВЕРЖДАЮ:			
«»_	_20	Γ.	Зав. кафедрой

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ БИЛЕТ № 3

дисциплина Петрофизика

Кафедра «Прикладная геофизика и геоинформатика» семестр 5

- 1. Связь пористости с другими петрофизическими характеристикам.
- 2. Нейтронные эффективные сечения.

УТВЕРЖДАЮ:			
«»_	_20	Γ.	Зав. кафедрой

Критерии оценки знаний студента на экзамене

Оценка «отлично» выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений.-(20 баллов)

Оценка «хорошо» - выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя. (15 баллов)

Оценка «удовлетворительно» - выставляется студенту, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации. (10 баллов)

Оценка «неудовлетворительно» - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

Баллы, полученные студентом по всем формам контроля в течение семестра, суммируются, и при наборе нижеперечисленного количества баллов студент получает «автоматически» итоговую оценку.