МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика М.Д. Миллионщикова

РАБОЧАЯ ПРОГРАММА

дисциплины

"Интерпретация данных геофизических исследований скважин"

Специальность

21.05.03 - "Технология геологической разведки"

Специализация

"Геофизические методы исследования скважин"

Квалификация

горный инженер-геофизик

1. Цели и задачи дисциплины

Цель дисциплины - обеспечить усвоение студентам способов решение обратных задач при индивидуальной интерпретации данных геофизических исследований скважин. После прохождения курса выпускник должен быть подготовлен для выполнения индивидуальной интерпретации результатов геофизических исследований разведочных, эксплуатационных и параметрических (базовых) скважин для электрических, электромагнитных, ядерных, акустических, термических методов ГИС, образующих современный комплекс ГИС.

Полученные знания и умение должны позволить подготавливаемому специалисту ориентироваться в выборе того или иного метода геофизических исследования скважин" для решения конкретных производственных и научно-исследовательских задач, выполнять самостоятельно необходимую обработку и интерпретацию данных ГИС в конкретной ситуации с целью решения задач выделения коллекторов нефти и газа и оценки их свойств, выполнять все расчеты и графические построения, необходимые для составления дипломной работы.

2. Место дисциплины в структуре ООП

Дисциплина относится к базовой части профессионального цикла. Данный курс, помимо самостоятельного значения, является предшествующей и последующей дисциплиной для курсов: «Теория методов геофизических исследований скважин», «Комплексная интерпретация данных геофизических исследований скважин», «Алгоритмы и системы обработки и интерпретации», «Геофизические методы контроля разработки нефтяных и газовых месторождений», дисциплин специализаций и преддипломной практики.

3. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

-способностью использовать общеправовые знания в различных сферах деятельности (ОК-8);

-самостоятельным приобретением новых знаний и умений с помощью информационных технологий и использованием их в практической деятельности, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (ОПК-2):

-способностью организовать свой труд на научной основе, самостоятельно оценивать результаты своей профессиональной деятельности, владением навыками самостоятельной работы, в том числе в сфере проведения научных исследований (ОПК-4);

-умением разрабатывать и организовывать внедрение мероприятий, обеспечивающих решение стоящих перед коллективом задач в области технологий геологоразведочных работ на наиболее высокотехнологическом уровне (ПК-4);

-выполнением разделов проектов и контроль за их выполнением по технологии геологоразведочных работ в соответствии с современными требованиями промышленности (ПК-5);

-способностью находить, анализировать и перерабатывать информацию, используя современные информационные технологии (ПК-14);

знать:

-основы технологии бурения и заканчивания скважин, осложнения при аварии, контроля режима работы (ОК-8, ПК-4; ПК-5);

уметь

-формировать рациональный комплекс ГИС для изучения геологического разреза, технического состояния скважин и контроля разработки месторождения (ОПК-2).

владеть:

-навыками настройки и эксплуатации обрабатывающих систем, используемых в геологоразведке (ОК-8, ОПК-4).

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

			его	Семестры		
вид учебной работы		часо	рв/з.е.	9 Семестр	10 Семестр	
		ОФО	ЗФО	ОФО	3ФО	
Контактная работа (всего)		68/1,88	20/0,55	68/1,88	20/0,55	
Лекции		34/0,94	12/0,33	34/0,94	12/0,33	
Лабораторные работы (Л	P)	34/0,94	8/0,22	34/0,94	8/0,22	
в т. ч. интерактивная форма занятий		34/0,94	8/0,22	34/0,94	8/0,22	
Самостоятельная работа		76/2,11	124/3,44	76/2,11	124/3,44	
Рефераты		20/0,55	50/1,38	20/0,55	50/1,38	
Доклады		44/1,22	32/0,88	44/1,22	32/0,88	
И (или) другие виды само	остоятельной работы:					
Подготовка к лабораторным работам		12/0,33	12/0,33	12/0,33	12/0,33	
Вид отчетности		кзамен	экзамен	экзамен	экзамен	
Общая трудоемкость ВСЕГО в часах		144	144	144	144	
дисциплины	ВСЕГО в зач.	4	4	4	4	
	единицах					

5. СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

5.1 Разделы дисциплины и виды занятий

№	Наименование раздела	ОФО			3ФО		
п/п	дисциплины	Лекц.	Лаб.	Всего	Лекц.	Лаб.	Всего
		часы	занят,	часов	часы	занят,	часов
			часы/			часы	
1	Введение. Электрические и	6	6	12	1		1
	электромагнитные методы						

	Электрохимические	8	8	16	2	2	4
	методы ГИС						
3	Ядерные методы ГИС	4	4	8	2	2	4
4	Ядерно-магнитные методы ГИС	4	4	8	2	2	4
5	Акустические методы ГИС	4	4	8	2	2	4
6	Термические методы ГИС	4	4	8	1		1
7	Способы оценки надежности результатов индивидуальной интерпретации данных ГИС		4	8	2		2

5.2 Лекционные занятия

№ п/п	Наименование раздела дисциплины	Содержание раздела
1	2	3
1	Введение	Краткая история разработки алгоритмов индивидуальной интерпретации данных ГИС; вклад отечественных геофизиков. Задачи, которые решаются при интерпретации данных ГИС на стадиях поисков и разведки, эксплуатация нефтяных и газовых месторождений. Информационная модель ГИС.

2	Электрические и	Удельное электрическое сопротивление горных
		пород. Влияние на удельное сопротивление
	электромагнитные методы	коэффициента пористости, геометрии пор,
		минерального состава твердой фазы,
		минерализации, химического состава и температуры
		пластовых вод, объемной влажности породы,
		термобарических условий залегания породы.
		Интерпретация диаграмм трехэлектродных зондов.
		Кривые кажущегося сопротивления градиент- и
		потонциал-зондов в пластах высокого и низкого
		сопротивления, мощных и тонких для идеальных и
		реальных зондов при отсутствии и наличии влияния

скважин. Кривые трехэлектродных зондов в пачке пластов высокого и низкого сопротивления.

Интерпретация диаграмм бокового электрического зондирования (БЭЗ). Типы кривых зондирования в пластах бесконечной и ограниченной мощности при отсутствии и наличии зоны проникновения. Построение фактической кривой зондирования. Определение параметров зоны проникновения и неизмененной части пласта по палеткам БЭЗ. U-эквивалентность. Область применение и

ограничения БЭЗ. Интерпретациядиаграмм микрозондов. Задачи, решаемые по диаграммам микрозондов. Ограничения в применении метода.

Интерпретация диаграмм экранированных зондов ЭЗ (БК, МБК).

Поле трехэлектродного и семеэлектродного зонда БК. Зависимость эффективного удельного сопротивления, регистрируемого зондом БК.

Зависимость эффективного удельного сопротивления, регистрируемого зондом БΚ, параметров пласта, зоны проникновения, скважины. Интерпретации диаграмм однозондной И многозондовой модификации БК различных геоэлектрического условиях. Область применения БК. задачи, решаемые этим методом. Интерпретация микробокового и микросферического диаграмм зондов. Область их применения, решаемые задачи. Комплексная интерпретация диаграмм БК и МБК. Интерпретация диаграмм электромагнитных ГИС методов индукционного, высококачественного изопараметрического индукционного (ВИКИЗ), диэлектрического. Диэлектрическая проницаемость горных пород, факторы, ее определяющие. Анализ вклада в сигнал, регистрируемый электромагнитными методами, токов проводимости смещения в различных диапазонах частот электромагнитного поля.

Определение по данным одно-зондовой и много зондовой модификации ИК, по данным ВИКИЗ удельного сопротивления неизменной части коллекторов, строение зоны проникновения скважинах, пробуренных с растворами на водной основе (РВО), удельного сопротивления пород в скважинах, пробуренных с растворами на нефтяной основе (РНО).

Краткие сведения об интерпретации данных индукционного метода и ВИКИЗ в горизонтальных скважинах.

Интерпретация диаграмм диэлектрического метода в скважинах, пробуренных на РВО и РНО. Комплексная интерпретация диаграмм индукционного, диэлектрического метода и ВИКИЗ.

Комплексная интерпретация данных БЭЗ, БК и индукционного метода (изорезистивная методика).

3	Электрохимические	Электрокинетические свойства горных пород -
	методы ГИС	деффузионно-адсорбционная, фильтрационная,
	методы т те	окислительно-восстановительная активность,
		поляризуемость, факторы, определяющие значения
		этих параметров.
		Интерпретация диаграмм метода собственных
		потенциалов (СП). Влияние литологии пород,
		минерального состава твердой фазы, минерализации и
		химического состава пластовых вод и фильтрата
		бурового раствора на показания метода СП. Вклад в
		формирование поля СП различных физико-химических
		процессов в различных горно-геологических условиях.
		Задачи, решаемые при интерпретации диаграмм СП.
		Область применения метода. Интерпретация диаграмм
		вызванных потенциалов. Поляризуемость пород с иной
		и электронной проводимостью, факторы, ее
		определяющие. Задачи, решаемые методами ВП,
		область применения.
4	Ядерные методы ГИС	История создания ядерных методов ГИС, их роль
	, , 1	в современном комплексе ГИС, при поисках, разведке и
		разработке нефтяных и газовых месторождений.
		Метод естественной реактивности - гамма-метод (ГМ).
		Естественная радиоактивность горных пород,
		Интегральная и спектральная модификации гамма-
		метода. Факторы, влияющие на показания любых
		ядерных методов ГИС. Интерпретация диаграмм метода
		радиоактивных изотопов. Примеры решения различных
		геологических задач по данным ГМ.
		Метрологическое обеспечение
		интерпретации данных ГМ.
		Нейтронные методы ГИС. История открытия
		нейтрона. Нейтронные параметры элементов,
		минералов, горных пород. Модификации нейтронных
		методов - нейтронный гамма (НГМ), нейтрон-
		нейтронный (ННМ) по тепловым и надтепловым
		нейтронам, импульсные нейтронные методы (ИНГМ,
		ИННМ). Интерпретация диаграмм нейтронных методов
		со стационарным (НГМ, ННМ) и импульсным
		(ИНГМ, ИННМ) источником. Определение
		нейтронной пористости и суммарного
		водородосодержания по данным стационарных
		нейтронных методов. Выделение и изучение
		газоносных коллекторов по данным стационарных
		нейтронных методов, нефтеносных – по данным
		импульсных нейтронных методов. Использование
		нейтронных методов при контроле разработки
		нефтяных и газовых месторождений; ограничения в их
		применении. Метрологическое обеспечение
		исследований нейтронными методами.
		Нейтронно-активационные методы ГИС (НАМ).
		Физические основы применения НАМ.
		Интерпретация диаграмм кислородного,
L	1	титериретация диаграмм кислородного,

		кислородуглеродного методов, использование их методов для определения положения флюидальных контрактов. Метрологическое обеспечение интерпретации НАМ. Метод рассеянного гамма излучения ГГМ. Его плотностное ГГМ - п. и спектральная ГГМ-с. модификации. Ядерные реакции, изучаемые при работе с ГГм-п и ГГм-с. Интерпретация диаграмм ГГМ-п и ГГМ-с («Литологический метод ГИС»). Область применения и ограничения использования ГГМ. Метрологическое обеспечение интерпретации данных ГГМ.
5	Япарио магинтина матоли	
3	Ядерно-магнитные методы ГИС	Физические основы ядерно-магнитных явлений. Ядерно-магнитные свойства горных пород. Модификации ядерно-магнитного метода ГИС: изменение сигналов свободной процессии (ССП) и спинового эхо (СЭ). Интерпретация диаграмм ЯМР ГИС, определение индекса свободного флюида, времен продольной и поперечной релаксации. Решение различных геологических задач по данным ЯМР, область применения и ограничения метода. Метрологическое обеспечение интерпретации данных ЯМР.
6	Акустические методы ГИС	Параметры упругих горных пород. Акустический метод ГИС, его модификации: стандартная акустика, волновая широкополосная акустика, исследования многоэлементных зондов, скважинное акустическое телевидение. Интерпретация акустических методов, полученных в открытом и обсаженном стволе. Использование данных акустического метода при комплексной интерпретации их с результатами сейсморазведки (метод отраженных волн МОВ и вертикального сейсмического профилирования ВСП). Область применения и круг решаемых геологических задач. Метрологическое обеспечение интерпретации данных акустических методов.
7	Термические методы ГИС	Естественные и искусственные тепловые поля в нефтяных и газовых скважинах. Петрофизические основы интерпретация термограф. Интерпретация термограмм в условиях естественных тепловых полей. Интерпретация данных термометрии в эксплуатационных скважинах нефтяных и газовых месторождений. Круг решаемых задач. Метрологическое обеспечение интерпретации данных наклонометрии.
8	Способы оценки надежности результатов индивидуальной интерпретации данных ГИС	Способы оценки надежности, воспроизводимости данных ГИС и результатов индивидуальной интерпретации материалов ГИС. Метрологическая служба ГИС в нашей стране и за рубежом, ее

	достоинства	И	недостатки,	перспективы
	совершенствон	вания.		

5.3. Лабораторный практикум

№ п/п	Наимен. раздела дисципл.	Наименование лабораторных работ
1	2	Литологическое расчленение разрезов скважин
2	2	Корреляция разрезов скважин
3	2	Определение УЭС пластов по материалам бакового каротажного зондирования
4	2	Определение удельного электрического сопротивления пластов по материалам бокового каротажа
5	6	Определение УЭС пластов по диаграммам индукционного каротажа
6	7	Интерпретация диаграмм электрического каротажа микрозондами и определения УЭС промытой зоны проницаемых

5.4 ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (не предусмотрены) 6. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Самостоятельная работа по дисциплине составляет 108 часов в 7 семестре.

Темы для самостоятельного изучения:

- 1.Задачи, которые решаются при проведении ГИС
- 2.Информационная модель ГИС
- 3.Вклад отечественных геофизиков
- 4.Определение УЭС пластов p_n и параметров зоны проникновения (p_{3n}, D_{3n}) по результатам комплексных измерений зондами различных типов
- 5.Интерпретация диаграмм электрического каротажа микрозондами и определение удельного сопротивления промытой зоны проницаемых пластов
- 6.Интерпретация диаграмм градиент и потенциал зондов
- 7.Интерпретация диаграмм СП
- 8.Интерпретация диаграмм гамма-метода
- 9.Интерпретация диаграмм градиент и потенциал зондов

Литература:

- .Геофизические исследования скважин: Учеб. пособие / Перм. гос. техн. ун-т. Пермь, 2004. 122 с.
- 2. Геофизические исследования скважин и интерпретация данных ГИС: учеб. пособие / В.
- Н. Косков, Б. В. Косков. Пермь: Изд-во Перм. гос. техн. ун-та, 2007. 317 с.

3.Практические аспекты геофизических исследований скважин. Т. Дарлинг. М.: ООО «Премиум Инжиниринг», 2008

Варианты контрольных работ и требования к оформлению (для ОЗО):

Контрольная работа включает в себя:

- титульный лист;
- содержание;
- основную текстовую часть; -список использованной литературы.

Контрольная работа должна быть написана от руки или набрана в MS WORE) для WINDOWS на одной стороне стандартного листа формата A-4 без рамки, применяя следующие настройки: шрифт - Times New Roman, №14; межстрочный интервал - полуторный, поля: левое - 30 мм, правое - 15 мм, верхнее - 20 мм, нижнее - 20 мм; выравнивание по ширине. Повреждение листов, помарки в тексте не допускаются. Построения делаются на миллиметровке. Номер варианта выбирается по последней цифре зачетной книжки студента.

ВАРИАНТ 1:

Литологическое расчленение разреза и корреляция скважин по различным площадям с учетом характеристик пород.

ВАРИАНТ 2:

Определить УЭС пластов p_n и параметров зоны проникновения (p_{3n}, D_{3n}) по результатам комплексных измерений зондами различных типов.

Список литературы:

.Геофизические исследования скважин: Учеб. пособие / Перм. гос. техн. ун-т. Пермь, 2004. 122 с.

- 2. Геофизические исследования скважин и интерпретация данных ГИС: учеб. пособие / В. Н. Косков, Б. В. Косков. Пермь: Изд-во Перм. гос. техн. ун-та, 2007. 317 с.
- 3.Практические аспекты геофизических исследований скважин. Т. Дарлинг. М.: ООО «Премиум Инжиниринг», 2008

7. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

7.1. Вопросы к первой рубежной аттестации

- 1. Условия геофизических измерений в скважинах.
- 2. Двухслойные кривые БКЗ и их интерпретация.
- 3. Определение сопротивления промытой зоны пластов по данным микрозондирования.
- 4. Двухслойные палетки БКЗ и принцип их построения.
- 5. Определение сопротивления пластов по данным БК в двухслойной среде.
- 6. Определение исходных параметров, используемых при интерпретации (рв, рф, рсм, рно).
- 7. Кривые БК, опр-е границ пластов, отсчет существенных значений рк.
- 8. Величина рк, измерения при БК. Понятие о радиальном геометрическом факторе.
- 9. Интерпретация диаграмм микрозондов.
- 10. Трехслойные кривые БКЗ и принцип их построения.
- 12. Величина рк, измерения при БК. Понятие о радиальном геометрическом факторе.
- 13.Интерпретация диаграмм микрозондов.
- 14. Трехслойные кривые БКЗ и принцип их построения.
- 15.Цели и задачи интерпретации результатов ГИС, решение общегеологических и промыслово-геологических задач.
- 16. Определение $p_{\Pi}(p_{3\Pi})$ поданным МБК.
- 17.Интерпретация диаграмм микрозондов.

- 18. Трехслойные кривые БКЗ и принцип их построения.
- 19. Обработка результатов БКЗ.
- 20.3онды БК и их характеристика.

ОБРАЗЕЦ БИ. Грозненский государственный нефтяной тех «ПРИКЛАДНАЯ ГЕОФИЗИКА И Билет№ 1 к первой рубеж	нический университет КАФЕДРА ГЕОИНФОРМАТИКА»				
1. Литологическое расчленение пластов	1. Литологическое расчленение пластов				
2. Сопоставление a_{nc} с проницаемостью $a_{nc} =$	f(K')				
Лектор «»20г.	_ Хасанов М.А.				

7.2. Вопросы ко второй рубежной аттестации

- 1.Интерпретация диаграмм ПС. Определение относительной амплитуды ПС ($\acute{\alpha}_{nc}$).
- 2.Интерпретация диаграмм KC, кривые KC определение границ пластов, отчет существенных значений p_{κ} .
- 3. Кривые ПС, определение границ пластов, отсчет амплитуд.
- 4. Цитологическое расчленение разрезов скважин по комплексу геолого-геофизических ланных.
- 5. Факторы, влияющие на амплитуду ПС и способы их учета.
- 6.Определение границ и мощностей пластов по кривым БК, отсчет существенных значений p_{κ} .
- 7. Определение $p_{\Pi}, p_{3\Pi}, D_{3\Pi}$ по данным измерений зондами различных типов.
- 8.Обработка материалов БКЗ и построение фактической кривой БКЗ для пластов средней мошности.
- 9. Интерпретация результатов ИК.
- 10.Определение границ и мощностей пластов по диаграммам ПС.
- 11.Определение диффузионно-адсорбционной активности пород по данным метода ПС.
- 12. Диаграмма ПС, амплитуда аномалии ΔU_{nc} и способы ее определения по кривым ПС.
- 13. Геолого-геофизическая характеристика проницаемого пласта с гранулярной (межзерновой) пористостью.

ОБРАЗЕЦ БИЛЕТА

Грозненский государственный нефтяной технический университет КАФЕДРА «ПРИКЛАДНАЯ ГЕОФИЗИКА И ГЕОИНФОРМАТИКА» Билет № 4 ко второй рубежной аттестации

1. Определение критической отметки пористости 2. Определение сопротивления пласта -1 пласт водоносный					
Лектор Хасанов М.А.					
«»20г.					

Критерии оценки знаний студентов при проведении аттестации по дисциплине ИНТЕРПРЕТАЦИЯ ДАННЫХ ГИС"

Максимальное возможное количество набранных баллов в соответствии с БРС при проведении рубежных аттестации 20 баллов. Количество набранных студентом баллов при проведении рубежной аттестации, зависит от количества правильных ответов. Контрольная работа пишется по вариантам. В каждом варианте по два вопроса из перечисленных выше. Правильный ответ на 1 и 2 вопросы соответствует 10 баллов за каждый вопрос.

7.3. Вопросы к экзамену

- 1. Условия геофизических измерений в скважинах.
- 2. Двухслойные кривые БКЗ и их интерпретация.
- 3. Интерпретация диаграмм ПС. Определение относительной амплитуды ПС ($lpha_{nc}$).
- 4. Определение сопротивления промытой зоны пластов по данным микрозондирования.
- 5.Интерпретация диаграмм КС, кривые КС определение границ пластов, отчет существенных значений p_{κ} .
- 6. Двухслойные палетки БКЗ и принцип их построения.
- 7. Кривые ПС, определение границ пластов, отсчет амплитуд.
- 8. Определение сопротивления пластов по данным БК в двухслойной среде.
- 9. Определение исходных параметров, используемых при интерпретации (p_B , p_{φ} , p_{cm} , p_{ho}).
- 10. Кривые БК, определение границ пластов, отсчет существенных значений рк.
- 11.Интерпретация диаграмм КС.
- 12.Величина рк, измерения при БК. Понятие о радиальном геометрическом факторе.
- 13.Интерпретация диаграмм микрозондов.
- 14. Трехслойные кривые БКЗ и принцип их построения.
- 15.Цели и задачи интерпретации результатов ГИС, решение общегеологических и промыслово-геологических задач.
- 16.Литологическое расчленение разрезов скважин по комплексу геолого-геофизических данных.
- 17. Факторы, влияющие на амплитуду ПС и способы их учета.
- 18. Определение сопротивления пластов по данным БК в трехслойной среде.
- 19.Интерпретация диаграмм ПС.
- 20.Обработка результатов БКЗ.
- 21 .Зонды БК и их характеристика.
- 22. Трехслойные кривые БКЗ и их интерпретация.
- 23. Определение границ и мощностей пластов по кривым БК, отсчет существенных значений p_{κ} .
- 24.Определение $p_{\pi}, p_{3\pi}, D_{3\pi}$ по данным измерений зондами различных типов.
- 25.Определение рп поданным МБК.
- 26.БКЗ, обработка материалов БКЗ и построение фактической кривой БКЗ для пластов средней мощности.
- 27.Интерпретация результатов ИК.
- 28.Определение границ и мощностей пластов по диаграммам ПС.
- 29.Интерпретация диаграмм БК в трехслойной среде.
- 30.Определение диффузионно-адсорбционной активности пород по данным метода ПС.
- 31. Диаграмма ПС. амплитуда аномалии АUnc и способы ее определения по кривым ПС.
- 32.Определение p_{π} пластов по кривым БК-3 в двухслойной среде.
- 33. Геолого-геофизическая характеристика проницаемого пласта с гранулярной

« » 20 г.

34.Влияние мощности и УЭС пласта на амплитуду ПС. Учет этого влияния

ОБРАЗЕЦ БИЛЕТА Грозненский государственный нефтяной технический университет КАФЕДРА «ПРИКЛАДНАЯ ГЕОФИЗИКА И ГЕОИНФОРМАТИКА» Дисциплина: « «Интерпретация данных ГИС» ИНГ, Специальность: НИ, Семестр - 7 Билет № 1 1. Определение границ и мощностей пластов по кривым БК, отсчет существенных значений p_{κ} 2,Определение p_{n} , p_{m} , \mathcal{A}_{m} по данным измерений зондами различных типов Зав. кафедрой, доцент ______

Интерактивные образовательные технологии, используемые на аудиторных занятиях

Наиболее плодотворное освоение дисциплины обеспечивают интерактивные формы обучения, минимальный объем которых согласно требованиям $\Phi\Gamma$ OC составляет 30 % от общего объема аудиторных занятий.

По дисциплине «Интерпретация данных геофизических исследований скважин» (для специализации "Геофизические методы исследования скважин" 36 часов (для 3ФО – 12 часов) отводятся на занятия, проводимые в интерактивной форме. Для интерактивных занятий используются следующие средства и способы:

- рабочая группа компьютеров, соединенных по локальной сети (ЛС);
- проектор (для публичного показа результатов работ студентов);
- -просмотры тематических фильмов, что позволяет более эффективно усвоить пройденный материал.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Основная литература

- 1. Геофизические исследования скважин: Учеб. пособие / Перм. гос. техн. ун-т. Пермь, 2004. 122 с.
- 2. Геофизические исследования скважин и интерпретация данных ГИС: учеб. пособие / В. Н. Косков, Б. В. Косков. Пермь: Изд-во Перм. гос. техн. ун-та, 2007. 317 с.
- 3.Практические аспекты геофизических исследований скважин. Т. Дарлинг. М.: ООО «Премиум Инжиниринг», 2008
- 4. Калинникова М. В., Головин Б. А., Головин К. Б. Учебное пособие по геофизическим исследованиям скважин. Саратов, 2005.

б) Дополнительная литература

- 1 .Электронный конспект лекций
- 2.Интернет pecypcы: www.karotazhnik.ru/downloads/catalog_girs_oglavlenie.pdf; www.twirpx.com; www.karotazh.ru/ru/complex cascade.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- -лаборатория промысловой геофизики оборудованное современным оборудованием и аппаратурой для проведения геофизических исследований скважин (лаб. 3-31);
- -лаборатория обработки и интерпретации геофизических данных содержащий комплекс программ для оцифровки и автоматизированной визуальной интерпретации результатов геофизических исследований скважин (лаб. 3-24a);
- -лаборатория геоинформационных технологий (лаб. 3-29).

Для проведения качественного обучения в лабораториях используются предоставленные ведущими геофизическими организациями (предприятиями) аппаратура и оборудование и программные комплексы современного уровня:

- -лаборатория каротажная ЛК-101А с комплектом скважинных приборов;
- -регистратор Карат С-С-П с комплектом скважинных приборов;
- -програмно-аппаратный комплекс ScanDigit;
- -система автоматизированной визуальной интерпретации результатов ГИС (Cintel) В лабораториях содержатся электронные версии методических указаний к лабораторным работам.

Составитель:

Доцент кафедры «Прикладная геофизика и геоинформатика»

М.А. Хасанов

СОГЛАСОВАНО:

Зав. кафедрой «ПГ и Г»

Con Mis 2

А.С. Эльжаев

Директор ДУМР

М.А. Магомаева