Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Магомед Шавалович

Должность: Ректор Дата подписания: 22.11.2023 12:19:53

Уникальный программный ключ: 236bcc35c296f119dc2adc2283bCKий госудь рественный нефтяной технический университет

имени академика М.Д. Миллионщикова

«УТВЕРЖДАЮ»

Первый проректор

И.Г. Гайрабеков

026

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теоретические основы обработки геофизических данных»

Специальность

21.05.03 - «Технологии геологической разведки»

Специализация

«Геофизические методы исследования скважин»

Квалификация

горный инженер-геофизик

1.Цели и задачи дисциплины

Целью изучения дисциплины является овладение студентами методикой экспериментальных данных разведочной геофизики. Задача изучения дисциплины — это обучение студентов приемам изучения спектральных и корреляционных свойств геофизических полей, регрессионного и факторного анализа полей, фильтрации экспериментальных данных при различной полноте априорной информации о сигналах и помехах.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части профессионального цикла. Перечень дисциплин, необходимых для изучения курса «Теоретические основы обработки геофизической информации»: высшая математика, физика, радиоэлектроника, общие курсы разведочной геофизики.

3. Требования к результат освоения дисциплины

Выпускник по специальности «Технологии геологической разведки» с квалификацией специалист должен обладать следующими компетенциями:

общекультурные (способность):

- способностью к абстрактному мышлению, анализу, синтезу (ОК-1);
- самостоятельным приобретением новых знаний и умений с помощью информационных технологий и использованием их в практической деятельности, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (ОПК-2);
- ведением поиска и оценки возможности внедрения компьютеризированных систем (включая реализацию программного обеспечения, графического моделирования) для управления технологиями геологической разведки (ПК-10);
- способностью разрабатывать алгоритмы программ, реализующих преобразование геолого-геофизической информации на различных стадиях геологоразведочных работ (ПСК-2.8);

В результате освоения дисциплины студент должен

знать:

- теорию функций комплексного переменного; гармонический анализ, линейные преобразования, цифровую фильтрацию и теоретические приемы цифровой обработки сигналов - в объеме, необходимом для владения математическим аппаратом при решении геолого-разведочных задач; фундаментальные основы теории распространения волн в однородных и неоднородных средах, идеальных и поглощающих средах; структуру волновых полей; методы моделирования волновых полей (ОК -1; ОПК-2; ПК-10; ПСК-2.8).

уметь:

- применить детерминистические и стохастические методы в задачах выделения слабых сигналов и распознавания образов при обработке и комплексном анализе геофизических данных (ОК -1; ОПК-2; ПК-10; ПСК-2.8).

владеть:

- математическими приемами цифровой обработки сигналов, основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки обработки данных и работы с компьютером как средством управления информацией (ОК -1; ОПК-2; ПК-10; ПСК-2.8).

4.Объем дисциплины и виды учебной работы

Таблица 1

Вид учебной работы		Всего часов/ зач.ед. Семестры	
		7	5
		Контактная работа (всего)	
В том числе:			
Лекции		30/0,83	8/0,22
Лабораторные работы		15/0,41	4/0,5
Самостоятельная работа (всего)		63/1,75	96/2,66
В том числе:			
Рефераты		20/0,55	50/1,38
Подготовка к лабораторным работам		20/0,55	26/0,72
Подготовка к зачету		23/0,63	20/0,55
Вид отчетности		зачет	зачет
	ВСЕГО в часах	108	108
Общая трудоемкость дисциплины	ВСЕГО	3	3
	в зач. единицах		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 2

No	Наименование раздела	Лекц.	Лаб.	Всего
пп	дисциплины	часы/з.е.	занят.	часов зач.ед.
			часы/з.е.	
1	Введение	2/0,05	-	2/0,05
2	Корреляционно-регрессионный анализ,			
	интерполяция и аппроксимация геофизических	2/0,05	2/0,05	4/0,11
	данных. Корреляция и регрессия			
3	Дисперсионный и факторный анализы	4/0.11		4/0.11
	геофизических данных.	4/0,11	-	4/0,11
4	Корреляционные характеристики	4/0.11	4/0.11	0/0.5
	геофизических полей.	4/0,11 4/0,11		8/0,5
5	Спектральный анализ геофизических сигналов.	4/0,11	-	4/0,11
6	Линейная фильтрация геофизических полей.	4/0,11	-	4/0,11
7	Теория статистических решений в задачах			
	обнаружения слабых сигналов.	4/0,11	4/0,11	8/0,5
8	Комплексный анализ геофизических полей.	4/0,11	5/0,13	9/0,25
9	9 Обработка многоуровневой геофизической			2/0,05
	информации.	2/0,05		2/0,05
	ОТОГИ	30/0,83	15/0,41	45/1,25

5.2 Лекционные занятия

№	Наименование раздела	Содержание раздела
<u>пп</u> 1	дисциплины Введение	Детерминированный и вероятно-статистический
1	о ведение	Детерминированный и вероятно-статистический подходы к обработке геоданных. Геометрическая вероятность как основа расчета геофизических сетей. Роль статистической вероятности при обработке данных физических свойств горных пород и руд. Теорема Байеса и ее значение для переоценки априорных вероятностей. Критерии согласия.
2	Корреляционно- регрессионный анализ, интерполяция и аппроксимация геофизических данных. Корреляция и регрессия.	Информационная матрица Фишера. Корреляционная таблица. Оценка тесноты корреляционной связи. Выборочный коэффициент корреляции. Коэффициент ранговой корреляции. Множественный коэффициент корреляции. Корреляционное отношение. Виды регрессии и их применение. Линейная регрессия, ее применение при обработке данных физических свойств горных пород, определение глубины залегания горизонта по геофизическим данным и т.д. Нелинейная регрессия, ее применение. Множественная регрессия и ее применение для количественной комплексной интерпретации, обработки данных физических свойств пород и т.д. Корреляционные методы преобразований гравитационных и магнитных аномалий. Корреляционный метод разделения геофизических
3	Дисперсионный и	аномалий. Основы дисперсионного анализа. Факторная, общая и
	факторный анализы геофизических данных.	остаточная дисперсии. Однофакторный анализ. Двухфакторный анализ. Двухфакторный дисперсионный анализ рангов. Применение дисперсионного анализа при изучении тренда. Факторный анализ. Математическая модель факторного анализа. Ковариационная и корреляционная матрицы. Метод главных компонент. Собственные значения и собственные векторы корреляционной матрицы, и их физический смысл при обработке геофизических полей. Области применения факторного и компонентного анализов в разведочной геофизике. Разделение геофизических полей на составляющие. Интерполяция наблюденных полей. Комплексная интерпретация геофизических данных информации в ГИС
4	Корреляционные	Основные понятия теории случайных процессов.
	характеристики геофизических полей.	Математическое ожидание, дисперсия, автокорреляционная функция. Стационарность и эргодичность случайного процесса. Автокорреляционная функция (АКФ) и ее применение. Определение АКФ, основные виды автокорреляционных функций геофизических полей. Интервал корреляции, определение и его применение при обработке данных. Построение корреляционной матрицы по АКФ при

		оценке формы и корреляционных свойств сигналов и помех, при оценке разрешающей способности различных приемов обработки. Корреляционное зондирование потенциальных полей. Взаимокорреляционные функции (ВКФ) и их применение. Применение ВКФ для оценки простирания аномалии, формы сигналов, величины отношения сигнал/помеха. Двумерные и трехмерные корреляционные функции, определение и применение. Структурная функция, ее применение в задачах обработки данных. Ретрокорреляционная функция.
5	Спектральный анализ геофизических сигналов.	Спектры непрерывных сигналов и их дискретных аналогов. Спектры непрерывного сигнала. Быстрое преобразование Фурье. Дискретизация непрерывных сигналов. Теорема Котельникова. Разложение сигналов по сферическим функциям. Спектры стационарного, случайного процесса. Спектральная плотность случайного процесса. Спектр автокорреляционной функции. Z-преобразование, разложение сигналов по другим системам ортогональных функций. Функции Уолша. Основные приложения спектрального анализа при обработке геофизических данных. Оценка спектральных составляющих наблюденного поля. Изучение трансформаций полей в магнитогравиразведке, сглаживание полей и т.д.
6	Линейная фильтрация геофизических полей.	Математические модели геофизических полей. Свертка во временной и частотной областях. Физически реализуемые фильтры. Рекурсивная фильтрация. Фильтры Чебышева и Баттерворта. Двумерные линейные фильтры. Характеристика направленности. Пространственно-временные фильтры в сейсморазведке. Оптимальные линейные фильтры: Колмогорова – Винера, согласованный и энергетический. Обратный фильтр, компенсирующий фильтр. Вейвлет – анализ геофизических полей.
7	Теория статистических решений в задачах обнаружения слабых сигналов.	Пеофизических полеи. Основные понятия теории статистических решений. Статистическая гипотеза. Ошибки 1 и 2 рода и их вероятности. Функция правдоподобия. Средний риск. Критерии принятия статистических решений. Критерий минимального риска. Критерий Котельникова и максимального правдоподобия. Критерий минимакса. Критерий Неймана-Пирона. Критерий последовательного анализа. Надежность обнаружения аномалии. Определение понятия надежности обнаружения аномалии. Применение этого понятия для выражения количественной зависимости между величиной отношения сигнал/помеха и вероятностью обнаружения, оценки шага съемки при заданном отношении сигнал/помеха и оценки глубинности исследований.

		Способ обратных вероятностей.	
		Способ межпрофильной корреляции.	
		Способ адаптивной (самонастраивающейся) фильтрации.	
		Примеры применения. Непараметрические приемы	
		обнаружения геофизических аномалий.	
8	Комплексный анализ	Понятие о распознавании образов. Математические	
	геофизических полей.	модели при обработке данных комплекса. Основные	
	то физический полож.	принципы обработки данных геофизического комплекса.	
		Оценка информативности признаков и их комплекса.	
		Оценки, основные на расчете энтропии, отношения	
		сигнал/помеха, надежности обнаружения.	
		Информационная совокупность признаков.	
		Комплексный анализ признаков при наличии эталонных	
		объектов.	
		Логические приемы обработки, регрессионный анализ и	
		проверка статистических гипотез при распознавании	
		образов. Потенциальные функции.	
		Комплексный анализ признаков при отсутствии	
		эталонных объектов. Применение факторного анализа и	
		метода главных компонент. Кластер-анализ. Примеры	
		применения для задач геокартирования и поисков	
		месторождений полезных ископаемых.	
9	Обработка многоуровневой	Понятие об интегрированном системном анализе	
	геофизической информации.	геоинформации. Принципы интегрированного	
	теофизической информации.	системного анализа. Эффект телескопирования	
		геофизических сигналов. Многомерные аналоги	
		способов обратных вероятностей и	
		самонастраивающейся фильтрации. Количественные	
		приемы оценки глубины залегания контактной	
		поверхности по многоуровневым геофизическим	
		наблюдениям.	
		Комплексный анализ многоуровневой и	
		разнопараметровой геоинформации. Многофакторные	
		модели геообъектов.	

5.3. Лабораторный практикум

No	Наименование раздела дисциплины	Наименование лабораторных работ
ПП		
1	Построение и анализ авто и	Обработка экспериментальных
	взаимокорреляционных функций. Определение	данных на ЭВМ по способу обратных
	отношения сигнал/помеха, оценка простирания	вероятностей.
	сигналов.	
2	Построение фильтра Колмогорова-	Обработка экспериментальных
	Винера. Составление системы линейных	данных на ЭВМ по способу
	уравнений для нахождения весовой функции	межпрофильной корреляции.
	фильтра. Обработка данных на ЭВМ с	
	помощью фильтра Колмогорова-Винера.	
3	Обработка экспериментальных данных	Обработка экспериментальных
	на ЭВМ по способу межпрофильной	данных на ЭВМ по способу
	корреляции.	самонастраивающейся фильтрации.

4	Обработка экспериментальных данных	Обработка экспериментальных		
	на ЭВМ по способу самонастраивающейся	данных комплекса геофизических		
фильтрации.		признаков на ЭВМ.		

5.4. Практические занятия (семинары) - не предусматриваются

6. Самостоятельная работа студентов по дисциплине

Самостоятельная работа по дисциплине составляет: 57 часов Программой предусматривается самостоятельное освоение части разделов курса. Результатом изучения является реферат объемом 10-15 страниц. После собеседования и защиты реферата тема считается усвоенной.

Тема для рефератов

- 1 Корреляционные характеристики геополей.
- 2 Выделение слабых геофизических сигналов на основе. Проверки статистических гипотез.
- 3 Линейная оптимальная фильтрация геофизических полей. Понятия сигнала (аномалии) и помехи.
- 4 Спектральный анализ геофизических данных
- 5 Статистические характеристики геофизических полей.

7. Оценочные средства

Вопросы к первой рубежной аттестации

- 1. Элементы теории вероятностей и математической статистики
- 2. .Случайная величина
- 3. Функция распределения
- 4. Функция плотности вероятности
- 5. Медиана случайной величины
- 6. Статистические оценки параметров распределения случайной величины
- 7. Основные свойства оценки среднего значения случайной величины
- 8. Системы случайных величин. Случайная величина Ү
- 9. Коэффициент корреляции величин X и Y
- 10. Особенности оценки статистических характеристик геофизических полей
- 11. Интерпретация полей статистических характеристик геополей
- 12. Градиентные характеристики геополей
- 13. Случайные функции
- 14. Дисперсия случайной функции X(t)
- 15. Эргодическое свойство
- 16. Корреляционные характеристики геополей
- 17. Автокорреляционная функция
- 18. Взаимно корреляционная функция
- 19. Двумерные авто- и взаимно корреляционные функции.
- 20. Спектральный анализ геофизических данных
- 21. Спектры непрерывных сигналов

Образцы вариантов для первой рубежной аттестации:

Вариант 1

- 1. Автокорреляционная функция?
- 2. Взаимно корреляционная функция?

Вариант 2

- 1. Функция распределения?
- 2. Функция плотности вероятности?

Вопросы ко второй рубежной аттестации

- 1. Спектры дискретно заданного сигнала
- 2. Линейная оптимальная фильтрация геофизических полей
- 3. Одномерная фильтрация
- 4. Основные характеристики одномерного фильтра
- 5. Двумерная фильтрация
- 6. Линейная адаптивная фильтрация геофизических полей
- 7. Адаптивная фильтрация в окне живой формы
- 8. Выделение слабых геофизических сигналов на основе
- 9. Проверки статистических гипотез.
- 10. Слабым сигналом (слабая аномалия)
- 11. Критерии принятия статистических решений
- 12. Способ обратных вероятностей.
- 13. Метод межпрофильной корреляции
- 14. Способ самонастраивающейся фильтрации
- 15. Обработка многопризнаковой геофизической информации методами многомерного статистического анализа
- 16. Принципы построения алгоритмов обработки многопризнаковых наблюдений
- 17. Многомерные методы обнаружения слабых многопризнаковых аномалий
- 18. Многомерный способ самонастраивающейся фильтрации
- 19. Особенности применения многомерных алгоритмов обнаружения и примеры их использования
- 20. Особенности применения алгоритма распознавания многопризнаковых геофизических аномалий и конкретные примеры

Образцы вариантов для второй рубежной аттестации:

Вариант 1

- 1. Основные характеристики одномерного фильтра?
- 2. Двумерная фильтрация?

Вариант 2

- 1. Выделение слабых геофизических сигналов на основе?
- 2. Проверки статистических гипотез?

Вопросы к зачету

- 1. Статистические характеристики геофизических полей
- 2. Элементы теории вероятностей и математической статистики
- 3. Статистические оценки параметров распределения случайной величины
- 4. Системы случайных величин
- 5. Особенности оценки статистических характеристик геофизических полей
- 6. Об интерпретации полей статистических характеристик геополей
- 7. Градиентные характеристики геополей
- 8. Случайные функции (процессы)
- 9. Корреляционные характеристики геополей
- 10. Автокорреляционная функция
- 11. Взаимно корреляционная функция
- 12. Двумерные авто- и взаимно корреляционные функции
- 13. Спектральный анализ геофизических данных
- 14. Спектры непрерывных сигналов
- 15. Спектры дискретно заданного сигнала
- 16. Линейная оптимальная фильтрация геофизических полей
- 17. Одномерная фильтрация
- 18. Двумерная фильтрация
- 19. Критериальный подход к построению линейных фильтров
- 20. Линейная адаптивная фильтрация геофизических полей
- 21. Адаптивная фильтрация в окне живой формы
- 22. Выделение слабых геофизических сигналов на основе проверки статистических гипотез
- 23. Критерии принятия статистических решений
- 24. Способ обратных вероятностей
- 25. Метод межпрофильной корреляции
- 26. Способ самонастраивающейся фильтрации
- 27. Обработка многопризнаковой геофизической информации методами многомерного статистического анализа
- 28. Принципы построения алгоритмов обработки многопризнаковых наблюдений
- 29. Многомерные методы обнаружения слабых многопризнаковых аномалий
- 30. Распознавание многопризнаковых аномалий на основе проверки многомерных статистических гипотез

Образец билета на зачет:

Грозненский государственный нефтяной технический университет КАФЕДРА «ПРИКЛАДНАЯ ГЕОФИЗИКА И ГЕОИНФОРМАТИКА» Дисциплина «Теоретические основы обработки геофизической информации» ИНГ, Специальность: НИ, семестр

Билет № 1

- 1. Способ самонастраивающейся фильтрации?
- 2. Критерии принятия статистических решений?
- 3. Взаимно корреляционная функция?

8. Учебно-методическое и информационное обеспечение дисциплины

Основная:

- 1. Никитин А.А, Петров А.В. Теоретические основы обработки геофизической информации: Учебное пособие. 2-е изд. М.: Центр информационных технологий в природопользовании, 2010. 114 с. (библиотека кафедры)
- 2. Никитин А.А, Петров А.В. Теоретические основы обработки геофизической информации: Учебное пособие. М. 2008. 112 с. (библиотека кафедры)

Дополнительная:

- 3. Петров А.В. Теоретические основы обработки геофизических данных. Методическое пособие по курсу. М., 2008. 68 с.
- 4. Хмелевской В.К., Костицын В.И. Основы геофизических методов: учебник для вузов Пермь: Перм. ГУ, 2010. 400 с.(библиотека ГГНТУ)

9. Учебно-методическое и информационное обеспечение дисциплины

-электронный конспект лекций Обучающая программа ГЕОСТАТ. Компьютерная технология КАСКАД-2D, КАСКАД-3D.

Материально-техническое обеспечение дисциплины

-лаборатория обработки и интерпретации геофизических данных содержащий комплекс программ для оцифровки и автоматизированной визуальной интерпретации результатов геофизических исследований скважин

-лаборатория геоинформационных технологий

Для проведения качественного обучения в лабораториях используются предоставленные ведущими геофизическими организациями (предприятиями) аппаратура и оборудование и программные комплексы современного уровня:

В лабораториях содержатся электронные версии методических указаний к лабораторным работам.

Разработчик:

Доцент каф. «ПГ и Г»

yim,

/Эзирбаев Т.Б./

Согласовано:

Заведующий кафедрой «ПГ и Г»

Ma Tha

/Эльжаев А.С./

Директор ДУМР

April -

/Магомаева М. А./