Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Магомед Шавалович

Должность: Ректор

Дата подписания: 23.11.2023 13:54:18 Уникальный программный ключ:

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика М.Д. Миллионщикова

«УТВЕРЖДАЮ»

Первый проректор

И.Г. Гайрабеков

202 cr.

РАБОЧАЯ ПРОГРАММА

дисциплины

«ФИЗИКА»

Направление подготовки

27.03.01 Стандартизация и метрология

Профиль

«Метрология, стандартизация и сертификация»

Квалификация

Бакалавр

Грозный - 2020

1. Цель и задачи дисциплины

Целью изучения дисциплины «Физика» является создание у студентов основ широкой теоретической подготовки в области физики, позволяющей ориентироваться в потоке научной и технической информации и обеспечивающей им возможность использования новых физических принципов в тех областях техники, в которых они специализируются. Основными задачами курса физики в вузах являются:

- формирование у студентов научного мышления и современного естественнонаучного мировоззрения, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования;
- усвоение основных физических явлений и законов классической и современной физики, методов физического исследования;
- выработка у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающих студентам в дальнейшем решать инженерные задачи;
- ознакомление студентов с современной научной аппаратурой и выработка у студентов начальных навыков проведения экспериментальных научных исследований физических явлений и оценки погрешностей измерений.

2. Место дисциплины в структуре образовательные программы

Дисциплина «Физика» входит в обязательную часть цикла и является обязательной для изучения ОП направления подготовки бакалавров 27.03.01 «Стандартизация и метрология». Изучается во втором, третьем и четвертом семестре. Основой освоения данной учебной дисциплины является школьный курс Физики. Данная дисциплина является предшествующей для следующих дисциплин: Информатика, Прикладная математика, Механика, Электротехника и электроника, Гидрогазодинамика, Тепломассообмен, Автоматизация энергетических установок ТЭС и АЭС и др.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- способностью определять номенклатуру измеряемых и контролируемых параметров продукции и технологических процессов, устанавливать оптимальные нормы точности измерений и достоверности контроля, выбирать средства измерений и контроля; разрабатывать локальные поверочные схемы и проводить поверку, калибровку, юстировку и ремонт средств измерений (ПК-4);
- способностью проводить изучение и анализ необходимой информации, технических данных, показателей и результатов работы, их обобщение и систематизацию, проводить необходимые расчеты с использованием современных технических средств (ПК-17).

В результате освоения дисциплины обучающийся должен:

знать:

- основные физические явления, фундаментальные понятия и законы классической и современной физики.

уметь:

- применять полученные знания по физике при изучении других дисциплин, выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности.

влалеть:

- современной научной аппаратурой.

4. Объём дисциплины и виды учебной работы

Таблипа 1

								Таблица	1 1	
_	ча		Всего часов/ зач.ед.		Семестры			Семестры		
Вид уче	бной работы			2	3	4	2	3	4	
		ОФО	3ФО		ОФО			3ФО	l .	
Контактная работ	га (всего)	196/5,8	66/1,8	64/1,9	68/2,0	64/1,9	22/0,6	22/0,6	22/0,6	
В том числе:										
Лекции		98/2,9	30/0,8	32/1,0	34/0,5	32/0,5	10/0,3	10/0,3	10/0,3	
Практические заняти	я	49/1,4	18/0,5	16/0,5	17/0,5	16/0,5	6/0,17	6/0,17	6/0,17	
Семинары										
Лабораторные работ:	Ы	49/1,4	18/0,5	16/0,5	17/0,5	16/0,5	6/0,17	6/0,17	6/0,17	
Самостоятельная р	абота (всего)	200/5,2	330/9,2	44/1,1	76/2,0	80/2,1	86/2,4	122/3,5	122/3,5	
В том числе:										
Курсовая работа (про	оект)									
Расчетно-графические работы		60/1,33	108/3,0	12/0,33	22/0,6	26/0,6	32/0,9	38/1,1	38/1,1	
ИТР										
Рефераты										
Доклады										
Презентации										
И (или) другие виды самостоятельной работы:										
Подготовка к лабораторным работам		44/1,22	66/1,8	8/0,22	18/0,5	18/0,5	18/0,5	24/0,7	24/0,7	
Подготовка к практи	Подготовка к практическим занятиям		66/1,8	8/0,22	18/0,5	18/0,5	18/0,5	24/0,7	24/0,7	
Подготовка к зачету,	Подготовка к зачету, экзамену		90/2,5	16/0,44	18/0,5	18/0,5	18/0,5	36/1,0	36/1,0	
Вид отчетности		экзам.	экзам.	зачет	зачет	экзам.	зачет	зачет	экзам.	
Общая	ВСЕГО в часах	396	396	108	144	144	108	144	144	
трудоемкость	ВСЕГО в зач.	11	11	3	4	4	3	4	4	
дисциплины	единицах									

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 2

№ п/ п	Наименование раздела дисциплины	Часы лекционных занятий		Часы лабораторных занятий		Часы практических (семинарских) занятий		Всего часов	
		ОФО	3ФО	ОФО	3ФО	ОФО	3ФО	ОФО	3ФО
1.	П семестр Физические основы механики	16	4	8	3	8	3	32	10
2.	Молекулярная физика и термодинамика. Электростатика. Постоянный ток.	16	6	8	3	8	3	32	12
	Всего:	32	10	16	6	16	6	64	22
3.	Ш семестр Электричество и магнетизм. Геометрическая оптика.	17	6	9	4	9	4	35	14
4.	Колебания и волны	17	4	8	2	8	2	33	8
	Всего:	34	10	17	6	17	6	68	22
5.	IV семестр Квантовая физика	32	10	16	6	16	6	64	22
	итого:	98	30	49	18	49	18	196	66

5.2. Лекционные занятия

Таблица 3

		таолица 5
№ п/п	Наименование раздела дисциплины	Содержание раздела
1.	Физические основы механики	Механика. Физические модели. Динамика тел (частиц). Уравнения движения. Законы сохранения. Элементы релятивистской механики. Кинематика и динамика твердого тела. Динамика абсолютно твердого тела. Энергия.
2.	Основы молекулярной физики и термодинамики. Электростатика. Постоянный ток.	Введение в молекулярную физику и термодинамику. Идеальный газ. Кинетические явления. Конденсированное состояние. Три начала термодинамики. Теплоемкость. Круговой процесс. Классическая статистика. Электростатика. Постоянный ток. Законы постоянного тока. Сопротивление. Напряжение.
3.	Электродинамика.	Электрический ток в различных средах. Контактные явления. Магнитное поле. Сила Лоренца. Сила Ампера. Магнитное поле в вакууме и в веществе. Квазистационарные токи. Электромагнитная теория Фарадея. ЭДС. Уравнения Максвелла. Магнитные свойства вещества.
4.	Колебания и волны. Геометрическая оптика.	Механические и электромагнитные волны. Гармонические, затухающие и вынужденные колебания. Электромагнитные колебания. Колебательный контур. Уравнение бегущей волны. Звук. Интерференция и дифракция волн. Дисперсия волн. Когерентность волн. Шкала электромагнитных волн. Опто-волоконная связь. Элементы геометрической оптики. Линза. Построение в линзе.
5.	Квантовая физика	Атом водорода в квантовой механике. 1s-состояние электрона в атоме водорода. Спин электрона. Спиновое квантовое число. Принцип Паули. Распределение электронов в атоме по состояниям. Рентгеновские спектры. Молекулы: химические связи, понятие об энергетических уровнях. Молекулярные спектры. Комбинационное рассеяние света. Поглощение, спонтанное и вынужденное излучения.
6.	Квантовая статистика.	Фазовое пространство. Функция распределения. Понятие о квантовой статистике Бозе-Эйнштейна и Ферми-Дирака. Вырожденный электронный газ в металлах. Понятие о квантовой теории теплоемкости. Фотоны. Выводы квантовой теории электропроводности металлов. Сверхпроводимость. Элементы физики атомного ядра. Элементарные частицы.

5.3. Лабораторный практикум

Таблица 5

№ п/п	№ раздела дисциплины	Наименование лабораторных работ
1.		I семестр
	1.	Обработка результатов физического эксперимента.
		Определение ускорения свободного падения (q) с помощью математического маятника
		Определение коэффициента трения качения
		Определение момента инерции с помощью маятника Максвелла ФПМ-3
		Определение скорости звука методом резонанса звуковых волн
2.	2.	Определение коэффициента вязкости воздуха капиллярным методом
		Определение коэффициента внутреннего трения жидкости по методу Стокса
		Определение отношения теплоемкостей воздуха при постоянном давлении и объеме
		Определение молярной массы воздуха
3.	3.	ІІ семестр
		Изучение электроизмерительных приборов
		Изучение работы электронного осциллографа
		Определение работы выхода электронов из металла
		Изучение электрических свойств сегнетоэлетриков
		Определение отношения заряда электрона к его массе методом магнетрона.
		Определение периода колебаний струны.
4.	4.	III семестр
		Линзы и их погрешности
		Определение расстояния между щелями в опыте Юнга
		Исследование закона Малюса и прохождения поляризованного света через фазовую пластинку
		Определение фокусных расстояний положительной и отрицательной линз методом Бесселя

5.4. Практические занятия

Таблица 5

№ п/п	№ раздела дисциплины	Содержание раздела
		2 семестр
1.	1	Уравнение движения
	2	Законы сохранения
	3	Динамика абсолютно твердого тела
2.	4	Термодинамика
	5	Конденсированное состояние
	6	Кинетические явления
		3 семестр
3.	7	Напряженность электрического поля
	8	Потенциал электрического поля
	9	Энергия магнитного поля
4.	10	Идеальный гармонический осциллятор
	11	Электромагнитные волны в вакууме
	12	Поглощение и дисперсия волн
		4 семестр
5.	13	Геометрическая оптика
	14	Квантовая физика
	15	Ядерная физика
1		

6. Организация самостоятельной работы студентов (СРС) по дисциплине

6.1. Темы для самостоятельной работы

Таблица 6

№ п/п	№ раздела	Тема для самостоятельного изучения	
1.	1	Сила как характеристика взаимодействия тел.	
2.	4	Уравнение сферической, упругой бегущей, стоячей волны.	
3.	1	Закон сохранения импульса и однородность пространства	
4.	1	Гироскоп	

5.	1	Границы применимости классической механики
6.	1	Релятивистское сохранение длины и замедление времени
7.	1	Качения тел. Особенности движения тела при движении качении.
8.	2	Распределение Ферми-Дирака
9.	2	Особенности агрегатного состояния вещества
10.	2	Фазовые периоды
11.	2	Особенности строения и назначение конденсаторов
12.	3	Поляризация диэлектриков
13.	3	Магнитное поле. Особая форма материи.
14.	3	Диа – пора, ферро-магнетики и их свойства
15.	3	Максвеловская трактовка явлений электромагнитной индукции
16.	5	Особенности проводимости полупроводников
17.	5	Характеристика основных состояний атома водорода
18.	5	Уравнение Шрёдингера для стационарных и нестационарных состояний атома

6.2 Учебно-методическое обеспечение для самостоятельной работы.

- 1. Владимиров Ю.С. Основания физики [Электронный ресурс]/ Владимиров Ю.С.— Электрон. текстовые данные.— Москва: БИНОМ. Лаборатория знаний, 2015.— 456 с.— Режим доступа: http://www.iprbookshop.ru/6481.html.— ЭБС «IPRbooks»
- 2. Фолан Л.М. Современная физика и техника для студентов [Электронный ресурс]/ Фолан Л.М., Цифринович В.И., Берман Г.П.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2004.— 144 с.— Режим доступа: http://www.iprbookshop.ru/16628.html.— ЭБС «IPRbooks»
- 3. Курбачев Ю.Ф. Физика [Электронный ресурс]: учебное пособие/ Курбачев Ю.Ф.— Электрон. текстовые данные.— Москва: Евразийский открытый институт, 2011.— 216 с.— Режим доступа: http://www.iprbookshop.ru/11106.html.— ЭБС «IPRbooks»
- 4. Растова Н.А. Физика. Молекулярная физика [Электронный ресурс]: учебное пособие/ Растова Н.А.— Электрон. текстовые данные.— Волгоград: Волгоградский институт бизнеса, Вузовское образование, 2009.— 42 с.— Режим доступа: http://www.iprbookshop.ru/11357.html.— ЭБС «IPRbooks»
- 5. Успажиев Р.Т., УздиеваН.С. Курс молекулярной физики и термодинамики. ГГНТУ,2012

7. Оценочные средства

7.1 Второй семестр Вопросы к первой рубежной аттестации

- 1. Материальная точка, радиус-вектор, векторы перемещения, скорости, ускорения. Закон движения, траектория и пройденный путь.
- 2. Движение по окружности. Векторы угловой скорости и углового ускорения. Связь линейных и угловых кинематических величин.
- 3. Первый закон Ньютона. Инерциальные системы отсчета. Масса, импульс, сила.
- 4. Второй закон Ньютона. Третий закон Ньютона.
- 5. Вес тела. Невесомость. Силы трения.
- 6. Работа силы, мощность. Кинетическая энергия Потенциальная энергия. Связь между силой и потенциальной энергией.
- 7. Сохранение полной механической энергии материальной точки в поле потенциальных сил.
- 8. Центр масс и закон его движения.
- 9. Закон изменения и сохранения импульса системы материальных точек.
- 10. Момент инерции. Кинетическая энергия вращающегося твердого тела. Момент импульса, момент силы относительно оси.
- 11. Давление в жидкостях и газах. Закон Паскаля.
- 12. Закон Архимеда.
- 13. Уравнение неразрывности
- 14. Уравнение Бернулли.
- 15. Ламинарное течение. Турбулентное течение. Число Рейнольдса.
- 16. Вязкость.
- 17. Преобразования Галилея. Механический принцип относительности. Посту латы специальной теории относительности (СТО).
- 18. Преобразования Лоренца
- 19. Релятивистский закон преобразования скоростей.
- 20. Релятивистский импульс. Релятивистская форма второго закона Ньютона.
- 21. Закон взаимосвязи массы и энергии.
- 22. Гармонические колебания и их характеристики. Дифференциальное уравнение гармонических колебаний.
- 23. Механические гармонические колебания. Кинетическая и потенциальная энергии гармонических колебаний.
- 24. Гармонический осциллятор. Пружинный маятник. Физический маятник. Математический маятник.
- 25. Механические волны. Продольные и поперечные волны. Длина волны.

7.2 Вопросы ко второй рубежной аттестации

- 1. Статистическая физика и термодинамика.
- 2. Масса и размеры молекул.
- 3. Термодинамические параметры. Идеальный газ.
- 4. Уравнение состояния идеального газа. Закон Дальтона
- 5. Опытные газовые законы.
- 6. Хаотичность молекулярного движения. Средняя скорость молекул.
- 7. Понятие абсолютной температуры и основные положения МКТ.
- 8. Закон Максвелла о распределении молекул идеального газа по скоростям.
- 9. Барометрическая формула.
- 10. Среднее число столкновений и средняя длина свободного пробега молекул.
- 11. Явления переноса.
- 12. Предмет термодинамики. Основные определения. Внутренняя энергия системы.

Количество теплоты.

- 13. Первое начало термодинамики.
- 14. Теплоемкость газа. Физический смысл универсальной газовой постоянной.
- 15. Применение первого начала термодинамики к изопроцессам.
- 16. Адиабатный процесс. Политропный процесс.
- 17. Круговой процесс. Обратимые и необратимые процессы.
- 18.Энтропия.
- 19. Второе начало термодинамики.
- 20. Цикл Карно и его КПД для идеального газа.
- 21. Уравнение Ван-дер-Ваальса.
- 22. Изотермы Ван-дер-Ваальса.
- 23. Внутренняя энергия реального газа.
- 24. Эффект Джоуля-Томсона.
- 25. Поверхностное натяжение. Смачивание.
- 26. Испарение и плавление.

7.3 Вопросы к экзамену 2 семестра

- 1. Материальная точка, радиус-вектор, векторы перемещения, скорости, ускорения.
- 2. Закон движения, траектория и пройденный путь.
- 3. Связь линейных и угловых кинематических величин.
- 4. Векторы угловой скорости и углового ускорения.
- 5. Первый закон Ньютона. Инерциальные системы отсчета.
- 6. Масса, импульс, сила.
- 7. Второй закон Ньютона.
- 8. Третий закон Ньютона.
- 9. Вес тела. Невесомость.
- 10. Силы трения.
- 11. Работа силы, мощность, кинетическая энергия.
- 12. Потенциальные и непотенциальные силы. Потенциальная энергия. Связь между силой и потенциальной энергией.
- 13. Сохранение полной механической энергии и материальной точки в поле потенциальных сил.
- 14. Искусственные спутники Земли. Первая, вторая и третья космические скорости.
- 15. Системы материальных точек. Силы внешние и внутренние. Замкнутая система.
- 16. Центр масс и закон его движения.
- 17. Закон изменения и сохранения импульса системы материальных точек.
- 18. Закон сохранения механической энергии в консервативной системе.
- 19. Момент инерции. Вывод формулы моментов инерции диска. Значения моментов инерции для некоторых тел.
- 20. Кинетическая энергия вращающегося твердого тела.
- 21. Момент импульса, момент силы относительно оси.
- 22. Теорема Штейнера
- 23. Закон изменения и сохранения момента импульса твердого тела.
- 24. Давление в жидкостях и газах.
- 25. Закон Архимеда.
- 26. Уравнение неразрывности струи.
- 27. Уравнение Бернулли.
- 28. Ламинарное течение.
- 29. Турбулентное течение. Число Рейнольдса.
- 30. Вязкость.

- 31. Преобразования Галилея. Механический принцип относительности.
- 32. Постулаты специальной теории относительности (СТО).
- 33. Следствия из преобразований Лоренца. Одновременность событий в разных системах отсчета.
- 34. Преобразования Лоренца.
- 35. Следствия из преобразований Лоренца. Длительность событий в разных системах отсчета.
- 36. Следствия из преобразований Лоренца. Длина тел в разных системах отсчета.
- 37. Релятивистский закон преобразования скоростей.
- 38. Интервал между событиями.
- 39. Релятивистский импульс. Релятивистская форма второго закона Ньютона.
- 40. Закон взаимосвязи массы и энергии.
- 41. Гармонические колебания и их характеристики.
- 42. Дифференциальное уравнение гармонических колебаний.
- 43. Механические гармонические колебания.
- 44. Кинетическая и потенциальная энергии гармонических колебаний.
- 45. Гармонический осциллятор. Пружинный маятник.
- 46. Гармонический осциллятор. Физический маятник.
- 47. Гармонический осциллятор. Математический маятник.
- 48. Механические волны. Продольные и поперечные волны. Длина волны. Уравнение бегущей волны. Волновое число.
- 49. Статистическая физика и термодинамика.
- 50. Масса и размеры молекул.
- 51. Термодинамические параметры. Идеальный газ.
- 52. Основные положения МКТ.
- 53. Уравнение состояния идеального газа. Закон Дальтона
- 54. Опытные газовые законы.
- 55. Хаотичность молекулярного движения. Средняя скорость молекул
- 56. Основное уравнение кинетической теории газов.
- 57. Абсолютная температура.
- 58. Закон Максвелла о распределении молекул идеального газа по скоростям.
- 59. Барометрическая формула.
- 60. Среднее число столкновений и средняя длина свободного пробега молекул.
- 61. Явления переноса.
- 62. Предмет термодинамики. Основные определения.
- 63. Внутренняя энергия системы. Количество теплоты.
- 64. Работа и количество теплоты.
- 65. Первое начало термодинамики.
- 66. Теплоемкость газа. Физический смысл универсальной газовой постоянной.
- 67. Применение первого начала термодинамики к изопроцессам.
- 68. Адиабатный процесс. Политропный процесс.
- 69. Круговой процесс. Обратимый и необратимый прцессы.
- 70. Энтропия.
- 71. Второе начало термодинамики.
- 72. Цикл Карно и его КПД для идеального газа.
- 73. Уравнение Ван-дер-Ваальса. Изотермы реального газа.
- 74. Внутренняя энергия реального газа и его теплоемкость. Эффект Джоуля—Томсона.
- 75. Уравнение Джоуля—Томсона. Испарение и плавление.

7.4 Третий семестр Вопросы к первой рубежной аттестации

- 1. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля.

Силовые линии магнитного поля.

- 4. Работа поля при перемещении заряда.
- 5. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- 7. Поляризация диэлектриков. Напряженность поля в диэлектрике.
- 8. Электроемкость. Конденсаторы. Применение конденсаторов.
- 9. Энергия электростатического поля.
- 10. Электрический ток. Сила тока. Постоянный ток.
- 11. Закон Ома для участка цепи. Сопротивление проводника.
- 12.Типы соединения проводников.
- 13.Стронние силы. ЭДС. Закон Ома для полной цепи.
- 14. Закон Джоуля-Ленца. Работа тока. Мощность тока.
- 15. Электропроводность твердых тел. Природа тока в металлах.
- 16. Магнитное поле.

Силовые линии магнитного поля. Напряженность.

- 17. Закон Био-Савара-Лапласа.
- 18.Сила Ампера. Взаимодействие параллельных токов.
- 19.Сила Лоренца.

7.5 Вопросы ко второй рубежной аттестации

- 1. Вещество в магнитном поле. Парамагнетики, диамагнетики.
- 2. Эффект Холла.
- 3. Циркуляция вектора В магнитного поля в вакууме.
- 4. Теорема Гаусса для поля вектора В.
- 5. Работа по перемещению проводника и контура с током в магнитном поле.
- 6. Электромагнитная индукция. Магнитный поток.
- 7. Закон электромагнитной индукции и правило Лоренца.
- 8. Самоиндукция. ЭДС- самоиндукции.
- 9. Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля.
- 10. Электромагнитное поле. Ток смещения. Вихревое поле.
- 11. Переменный ток. Действующее значения напряжения и силы тока.
- 12. Индуктивность и емкость в цепи переменного тока.
- 13. Закон Ома для цепи переменного тока.
- 14. Колебательный контур. Формула Томсона. Собственные колебания.
- 15. Свободные и вынужденные колебания. Электрические автоколебания.
- 16. Резонанс токов и напряжений.
- 17. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 18. Электромагнитные волны . Волновые уравнение.
- 19. Энергия электромагнитных волн. Опыты Герца.
- 20. Шкала электромагнитных волн.
- 21. Фотометрия. Основные фотометрические величины и их единицы.
- 22. Геометрическая оптика. Понятие светового луча законы отражение и преломление света.
 - 23. Полное отражение света.
 - 24 Преломление и отражение света на сферической границе двух сред.
 - 25. Зеркала. Тонкие линзы. Формула линзы

7.6 Вопросы к зачету 3 семестра

- 1. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2.Взамодействие зарядов. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции.

Силовые линии магнитного поля.

- 4. Теорема Гаусса для электростатического поля в вакууме.
- 5. Работа поля при перемещении заряда. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала.
- 7. Диэлектрики и их поляризация. Напряженность поля в диэлектрике.
- 8. Проводники в электростатическом поле.
- 9. Конденсаторы. Электроемкость. Применение конденсаторов.
- 10. Энергия электростатического поля.
- 11. Электрический ток. Сила тока. Постоянный ток.
- 12. Закон Ома для участка цепи. Сопротивление проводников.
- 13. Типы соединения проводников.
- 14.Стронние силы. ЭДС. Закон Ома для полной цепи.
- 15. Закон Джоуля Ленца. Работа тока. Мощность тока.
- 16. Электропроводность твердых тел. Природа тока в металлах.
- 17. Магнитное поле. Силовые линии магнитного поля. Напряженность.
- 18. Закон Био-Савара-Лапласа.
- 19. Взаимодействие токов. Сила Ампера.
- 20.Сила Лоренца.
- 21.Эффект Холла.
- 22. Циркуляция вектора В магнитного поля в вакууме.
- 23. Теорема Гаусса для поля вектора В.
- 24. Работа по перемещению проводника и контура с током в магнитном поле.
- 20.Вещество в магнитном поле. Магнитная Проницаемость. Парамагнетики, лиамагнетики.
- 21. Природа ферромагнетизма. Постоянные магниты.
- 22. Электромагнитная индукция. Магнитный поток.
- 23. Закон электромагнитной индукции и правило Лоренца.
- 24.Самоиндукция. ЭДС самоиндукций.
- 25. Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля.
- 26. Электромагнитное поле. Ток смещения. Вихревое поле.
- 27. Переменный ток. Действующее значения напряжения и силы тока.
- 28.Индуктивность и емкость в цепи переменного тока.
- 29. Закон Ома для цепи переменного тока.
- 30. Колебательный контур. Формула Томсона. Собственные колебания.
- 31. Свободные и вынужденные колебания. Электрические автоколебания.
- 32. Резонанс токов и напряжений.
- 33. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 34. Электромагнитные волны . Волновые уравнение.
- 38.Свойства электромагнитных волн. Опыты Герца.
- 39. Шкала электромагнитных волн.
- 40. Фотометрия. Основные фотометрические величины и их единицы.
- 41. Геометрическая оптика. Понятие светового луча законы отражение и преломление света. Полное отражение света.
- 42. Преломление и отражение света на сферической границе двух сред.

- 43. Зеркала. Тонкие линзы. Формула линзы
- 44. Построение изображений в тонких в линзах и сферических зеркалах. зеркал и

7.7 Четвертый семестр.

Вопросы к первой рубежной аттестации

- 1. Явление интерференции света. Временная и пространственная когерентность.
- 2. Интерференция в тонких пленках.
- 3. Явление дифракции. Принцип Гюйгенса Френеля
- 4. Метод зон Френеля. Дифракция Френеля.
- 5. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 6. Дифракционная решетка.
- 7. Дифракция рентгеновских лучей на кристаллах.
- 8. Поляризация света. Поляризаторы и анализаторы.
- 9. Анализ поляризованного света. Вращение плоскости поляризации.
- 10. Явление дисперсии света.
- 11.Поглощение света.
- 13. Эффект Доплера.
- 14. Эффект Вавилова Черенкова.
- 15.Тепловое излучение
- 16. Законы равновесного теплового излучения.
- 17. Гипотеза Планка. Формула Планка
- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект. Законы Столетова.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.

7.8 Вопросы ко 2 рубежной аттестации

- 1. Масса и импульс фотона. Давление света.
- 2. Эффект Комптона.
- 3. Волновая функция.
- 4. Волна де- Бройля. Соотношения неопределенностей.
- 5. Уравнение Шредингера.
- 6. Уравнение Шредингера для стационарных состояний.
- 7. Туннельный эффект.
- 8. Потенциальный ящик.
- 9. Линейный гармонический осциллятор.
- 10. Двойственность представлений о веществе. Корпускулярно- волновой дуализм.
- 11. Опыты Резерфорда. Линейчатые спектры атомов.
- 12. Опыты Франка и Герца. Модель атома водорода Бора- Резерфорда.
- 13. Магнитный момент электрона. Спектр атома водорода.
- 14. Принцип Паули. Электронные оболочки. Периодическая система элементовМенделеева.
- 15. Спектры многоэлектронных атомов. Характеристические рентгеновские, спектры.
- 16. Закон Мозли. Водородоподобные спектры.
- 17. Природа химической связи. Молекулярные спектры. Комбинационное рассеяние света. Люминесценция.
- 18. Спонтанное и вынужденное излучения. Лазеры.

- 19. Естественная радиоактивность. Закон радиоактивного распада.
- 20. Состав ядра. Нуклоны. Заряд и массовое число ядра. Энергии и связи ядра.
- 21. Изотопы, Искусственные превращения ядер. *а-*и В-распада, у-излучение. Ядерные реакции.
- 22. Оболочечная и капельная модели ядра.
- 23. Деление ядер. Цепная реакция. Ядерные реакции на тепловых и быстрых нейтронах. Реакция синтеза, проблема управляемого термоядерного синтеза.
- 24. Фундаментальные взаимодействия. Классификация элементарных частиц.
- 25. Взаимодействие элементарных частиц и законы сохранения. Частицы и античастицы.
- 26. Барионы и мезоны. Резонансы Космические лучи.
- 27. Фундаментальные частицы. Частицы-участники и частицы-переносчики взаимодействий.

7.9 Вопросы к экзамену 4 семестра

- 1. Фотометрия. Основные фотометрические величины и их единицы.
- 2. Геометрическая оптика. Понятие светового луча законы отражение и преломление света. Полное отражение света.
- 3. Преломление и отражение света на сферической границе двух сред.
- 4. Зеркала. Тонкие линзы. Формула линзы
- 5. Построение изображений в тонких в линзах и сферических зеркалах. Аберрации линз и зеркал и способы их устранении.
- 6. Явление интерференции света. Временная и пространственная когерентность. Интерференция в тонких пленках.
- 7. Явление дифракции. Принцип Гюйгенса Френеля
- 8. Метод зон Френеля. Дифракция Френеля.
- 9. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 10. Дифракционная решетка.
- 11. Дифракция рентгеновских лучей на кристаллах. Условие Вульфа Брэгга.
- 12. Поляризация света. Поляризаторы и анализаторы.

Двойное лучепреломление.

- 13. Анализ поляризованного света. Вращение плоскости поляризации.
- 14. Явление дисперсии света. Нормальная и аномальная дисперсия.
- 15Тепловое излучение
- 16. Законы равновесного теплового излучения.
- 17. Гипотеза Планка. Формула Планка
- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.
- 21. Законы Столетова.
- 22. Поглошение света.
- 23. Эффект Доплера в оптике. Эффект Вавилова Черенкова.
- 24. Фотоэлектрический эффект. Уравнение Эйнштейна для фотоэффекта.
- 25. Тормозное рентгеновское излучение. Эффект Комптона.
- 26. Тепловое излучение и их характеристики. Закон Кирхгофа.
- 38. Единство корпускулярных и волновых свойств электромагнитного излучения
- 39.Тепловое излучение?
- 40. Чем характеризуется способность тел испускать и поглощать излучение?
- 41. Абсолютно черное тело.
- 42. Законы равновесного теплового излучения.
- 43. Гипотеза Планка. Формула Планка

- 44. Квант излучения. Энергия кванта излучения.
- 45. Фотоэлектрический эффект. Фотоны.
- 46. Уравнение Эйнштейна для внешнего фотоэффекта.
- 47. Давление света с квантовой точки зрения.
- 48. Эффект Комптона.
- 49. Волновая функция.
- 50. Волна де- Бройля. Соотношения неопределенностей.
- 51. Уравнение Шредингера для стационарных состояний.
- 52. Туннельный эффект.
- 53. Потенциальный ящик.
- 54. Линейный гармонический осциллятор.
- 55. Двойственность представлений о веществе. Корпускулярно- волновой дуализм.
- 56. Опыты Резерфорда. Линейчатые спектры атомов.
- 57. Модель атома водорода Бора- Резерфорда.
- 58. Магнитный момент электрона. Спектр атома водорода.
- 59. Принцип Паули. Электронные оболочки. Периодическая система элементовМенделеева.
- 60. Спектры многоэлектронных атомов. Характеристические рентгеновские, спектры.
- 61. Закон Мозли. Водородоподобные спектры.
- 62. Природа химической связи. Молекулярные спектры. Комбинационное рассеяние света.
- 63. Спонтанное и вынужденное излучения.
- 64. Естественная радиоактивность. Закон радиоактивного распада.
- 65. Состав ядра. Нуклоны. Заряд и массовое число ядра. Энергии и связи ядра.
- 66. Изотопы, Искусственные превращения ядер. a-и В-распада, у-излучение. Ядерные реакции.
- 67. Оболочечная и капельная модели ядра.
- 68. Деление ядер. Цепная реакция.
- 69. Ядерные реакции на тепловых и быстрых нейтронах. Реакция синтеза.
- 70. Фундаментальные взаимодействия. Классификация элементарных частиц.
- 71. Взаимодействие элементарных частиц и законы сохранения. Частицы и античастины.
- 72. Барионы и мезоны. Космические лучи.
- 73. Фундаментальные частицы. Частицы-участники и частицы-переносчики взаимодействий.

7.11 Текущий контроль

Вопросы к Практическим занятиям работам

- 1. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением
- ε . Определить тангенциальное ускорение α_t точки, если известно, что за времяt = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение $\alpha_n = 2.7 \text{ m/c}^2$.

- 2. Шар массой m_1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m_2 большего шара. Удар считать абсолютно упругим, прямым, центральным.
- 3. Какая работа A должна быть совершена при поднятии с земли материалов для постройки цилиндрической трубы высотой h= 40 м, наружным диаметром D = 3,0 м и внутренним диаметром d = 2,0 м? Плотность материала ρ принять равной 2,8 · 10 3 кг/м 3 .
- 4. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m_1 = 0,2 кг и m_2 = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг, а его ось движется вертикально вверх с ускорением α = 2 м/с²? Силами трения и проскальзывания нити по блоку пренебречь.
- 5. Однородный стержень длиной $\ell=1,0$ м и массой M=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на $\frac{2}{3}$ ℓ , абсолютно упруго ударяет пуля массой m=5 кг, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол $\alpha=60^{\circ}$. Определить скорость пули.
- 6. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус R_3 Земли в 6 раз меньше веса тела на Земле.
- 7. Определить плотность ρ водяного пара, находящегося под давлением p =2,5 кПа и имеющего температуруT = 250 К.
- 8.Определить среднюю кинетическую энергию $\langle E_n \rangle$ поступательного движения и $\langle E_{\it ep} \rangle$ вращательного движения молекулы азота при температуреT=1 кВ. Определить также полную кинетическую энергию $E_{\it k}$ молекулы при тех же условиях.
- 9. В сферической колбе вместимостью $V = 3\pi$, содержащей азот, создан вакуум с давлением p = 80 мкПа. Температура газаT = 250 К. Можно ли считать вакуум в колбе высоким?
- 10. Определить работу A, которую совершит азот, если ему при постоянном давлении сообщить количество теплоты Q=21 кДж. Найти также изменение ΔU внутренней энергии газа.
- 11. В цикле Карно газ получил от теплоотдатчика теплоту Q = 500 Дж и совершил работу A = 100 Дж. Температура теплоотдатчика $T_I = 400$ К. Определить температуру T_2 тепб 280. Две капли ртути радиусом r = 1,2 мм каждая слились в одну большую каплю. Определить энергию E, которая выделится при этом слиянии. Считать процесс изотермическим.

– Подготовка к выполнению графика лабораторного практикума - 27 часов

Самостоятельная подготовка к лабораторным занятиям заключается в изучении и усвоении ее теоретических предпосылок с помощью методических указаний к лабораторным работам и дополнительной литературы, рекомендованной в методических указаниях. Следует обратить особое внимание на теоретическое обоснование и вывод расчетной формулы, используемой для определения искомой величины, получить ясное представление о приборах, о схеме экспериментальной установки и порядке выполнения работы. Необходимо дать полные ответы на контрольные вопросы содержащиеся в конце методических указаний к лабораторным работам. Произвести обработку результатов эксперимента, сделать выводы и составить протокол по данной работе

Наименование лабораторных работ.

- 1. Обработка результатов физического эксперимента.
- 2.Определение ускорения свободного падения с помощью математического маятника
- 3. Определение момента инерции с помощью маятника Максвелла.
- 4.Определение коэффициента вязкости воздуха капиллярным методом
- 5.Определение коэффициента внутреннего трения жидкости по методу Стокса
- 6. Определение отношения теплоемкостей воздуха при постоянном давлении и объеме.
- 7. Изучение электроизмерительных приборов.
- 8. Изучение работы электронного осциллографа.
- 12. Расстояние d между двумя точечными зарядами 2nKn и 4nKn равно60 cm. Определить точку, в которую нужно поместить третий заряд так, чтобы система зарядов находилась в равновесии. Определить заряд и его знак. Устойчивое или неустойчивое будет равновесие? . Две трети тонкого кольца радиусом 10 cm несут равномерно распределенный с линейной плотностью 0,2 mkKn/m заряд. Определить напряженность электрического поля, создаваемого распределенным зарядом в точкеO, совпадающей с центром кольца.
- 13. Тонкая квадратная рамка равномерно заряжена с линейной плотностью заряда $nK_{\Lambda/M}$. Определить потенциал поля в точке пересечения диагоналей.
- 14. Электрон движется вдоль силовой линии однородного электрического поля. В некоторой точке поля с потенциалом 10~B электрон имел скорость 6~Mm/c. Определить потенциал точки поля, дойдя до которой электрон потеряет половину своей скорости.
- 15. Плоский конденсатор с площадью пластин $200~cm^2$ каждая заряжена до разности потенциалов $2~\kappa B$. Расстояние между пластинами 2~cm. Диэлектрик стекло. Определить энергию поля конденсатора и плотность энергии поля.
- 16. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом ($\lambda = 590$ нм). Радиус кривизны линзы равен 5 см. определить толщину воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.
- 17. Расстояние между штрихами дифракционной решетки 4 мкм. На решетку падает нормально свет с длиной волны 0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?

- 18. Пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. При каком угле падения свет, отраженный от границы стекло вода, будет максимально поляризован?
- 19. Частица находится в бесконечно глубоком, одномерном, прямоугольном потенциальном ящике. Найти отношение разности $\Delta E_{n,n+1}$ соседних энергетических уровней к энергии E_n частицы в трех случаях: 1) n=2; 2) n=5; 3) $n\to\infty$.
- 5. Найти период полураспада $T_{\frac{1}{2}}$ радиоактивного изотопа, если его активность за время t = 10 сут уменьшилась на 24 % по сравнению с первоначальной. f3:

F3:

Раздел 1. Механика

S: В системе СИ путь измеряется

- +: В Метрах
- -: В Градусах
- -: В Сантиметрах
- -: В Ньютонах

I:2

- S: Для вида движения совпадает путь, пройденный телом и его перемещение
- +: Для прямолинейного равномерного
- -: Для криволинейного
- -: Для вращательного движения
- -: Для равномерное движения по окружности

8. Учебно-методическое и информационное обеспечение дисциплины

а) Основная литература

- 1. Владимиров Ю.С. Основания физики [Электронный ресурс]/ Владимиров Ю.С.— Электрон. текстовые данные.— Москва: БИНОМ. Лаборатория знаний, 2015.— 456 с.— Режим доступа: http://www.iprbookshop.ru/6481.html.— ЭБС «IPRbooks»
- 2. Фолан Л.М. Современная физика и техника для студентов [Электронный ресурс]/ Фолан Л.М., Цифринович В.И., Берман Г.П.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2004.— 144 с.— Режим доступа: http://www.iprbookshop.ru/16628.html.— ЭБС «IPRbooks»
- 3. Курбачев Ю.Ф. Физика [Электронный ресурс]: учебное пособие/ Курбачев Ю.Ф.— Электрон. текстовые данные.— Москва: Евразийский открытый институт, 2011.— 216 с.— Режим доступа: http://www.iprbookshop.ru/11106.html.— ЭБС «IPRbooks»

- 4. Растова Н.А. Физика. Молекулярная физика [Электронный ресурс]: учебное пособие/ Растова Н.А.— Электрон. текстовые данные.— Волгоград: Волгоградский институт бизнеса, Вузовское образование, 2009.— 42 с.— Режим доступа: http://www.iprbookshop.ru/11357.html.— ЭБС «IPRbooks»
- 5. Плешакова Е.О. Физика. Механика [Электронный ресурс]: учебное пособие/ Плешакова Е.О.— Электрон. текстовые данные.— Волгоград: Волгоградский институт бизнеса, Вузовское образование, 2008.— 142 с.— Режим доступа: http://www.iprbookshop.ru/11356.html.— ЭБС «IPRbooks»
- 6. Звездина Н.А. Молекулярная физика. Термодинамика [Электронный ресурс]: учебно-методическое пособие по выполнению индивидуальных домашних заданий по физике/ Звездина Н.А., Пушкарева Н.Б., Сакун Г.В.— Электрон. текстовые данные.— Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015.— 44 с.— Режим доступа: http://www.iprbookshop.ru/68260.html.— ЭБС «IPRbooks»

б) Дополнительная литература

- 1. Лабораторные работы по физике. Выпуск 1. Механика [Электронный ресурс]: сборник методических указаний для выполнения лабораторных работ по физике/
 Электрон. текстовые данные.— Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, ЭБС АСВ, 2014.— 81 с.— Режим доступа: http://www.iprbookshop.ru/30808.html.— ЭБС «IPRbooks»
- 2. Лабораторные работы по физике. Выпуск 2. Электричество и магнетизм [Электронный ресурс]: сборник методических указаний для выполнения лабораторных работ по физике/ Электрон. текстовые данные. Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. 84 с. Режим доступа: http://www.iprbookshop.ru/30809.html. ЭБС «IPRbooks»
- 3. Лабораторные работы по физике. Выпуск 3. Колебания и оптика [Электронный ресурс]: сборник методических указаний для выполнения лабораторных работ по физике/ Электрон. текстовые данные.— Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, ЭБС ACB, 2014.— 99 с.— Режим доступа: http://www.iprbookshop.ru/30810.html.— ЭБС «IPRbooks»
- 4. Евсина Е.М. Оптика. Основы квантовой и ядерной физики [Электронный ресурс]: учебно-методическое пособие для лабораторных работ по физике/ Евсина Е.М., Соболева В.В.— Электрон. текстовые данные.— Астрахань: Астраханский инженерно-строительный институт, ЭБС АСВ, 2011.— 107 с.— Режим доступа: http://www.iprbookshop.ru/17059.html.— ЭБС «IPRbooks»
- 5. Соболева В.В. Общий курс физики [Электронный ресурс]: учебно-методическое пособие к решению задач и выполнению контрольных работ по физике/ Соболева В.В., Евсина Е.М.— Электрон. текстовые данные.— Астрахань: Астраханский инженерно-строительный институт, ЭБС АСВ, 2013.— 250 с.— Режим доступа: http://www.iprbookshop.ru/17058.html.— ЭБС «IPRbooks»

9. Материально-техническое обеспечение дисциплины

п/п	
1	Аудитория с мультимедийным оборудованием для проведения лекционных занятий.
2	Описание лабораторных работ для натурного исследования.
3	Аудитории с макетами для натурного исследования.

- 1. Лекционные демонстрации по разделам курса физики
- 2. Учебные лаборатории:
- №1-03 «Механика и молекулярная физика»
- № 1-15 «Электромагнетизма»
- № 0-13 «Оптика. Атомная физика»
- № 0-23 «Физика твердого тела»

Составитель:
Доцент кафедры «Физика»Успажиев Р.Т.
СОГЛАСОВАНО: Заведующий кафедрой «Физика»Успажиев Р.Т
Заведующий выпускающей кафедрой «Теплотехника и гидравлика»
Директор ДУМР Магомаева М.А.