Документ подписан простой электронной подписью

Информация о владельце:

ФИО: МИНЦАВВ МАГО МИНЦАВ МИНТИВ МАГО МИНЦАВ МИНТИВ МИН Должность: Регезненский государственный нефтяной технический университет

имени академика М.Д. Миллионщикова

Уникальный программный ключ:

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

«УТВЕРЖДАЮ» Первый проректор И.Г. Гайрабеков 2023 г. « 21 » 06

РАБОЧАЯ ПРОГРАММА

по дисциплине

«ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

Направление подготовки

18.03.01 «Химическая технология»

Направленность (профиль)

«Химическая технология природных энергоносителей и углеродных материалов»

«Химическая технология органических веществ»

Квалификация

бакалавр

Год начала подготовки

2023

1.Цели и задачи дисциплины

Целью преподавания дисциплины «Общая химическая технология» является изучение студентов с тенденциями развития химической технологии, актуальными задачами химических производств, проблемами комплексного использования сырья и энергии, создания безотходных производств, расширить кругозор инженера-химика-технолога.

Задачами преподавания дисциплины «Общая химическая технология» ознакомление с составом и структурой химического производства, изучение закономерностей химических превращений в условиях промышленного производства, обучение современным методам и приемам анализа, разработки и создания оптимальной организации химических и химикотехнологических процессов, развитие инженерного химико-технологического мышления и эрудиции при анализе и синтезе химико-технологических процессов и систем, изучение технологического оформления химико-технологических процессов на примере современных химических производств.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части. Для изучения курса требуется знание:

- физико-химическое изучение химико-технологических процессов и их математическое моделирование, опирающееся на закономерности физико-химических, теплообменных и аэрогидродинамических явлений, т.е. на основе знаний, полученных в предшествующих курсах неорганической, органической, аналитической и физической химии, физики, математики, процессов и аппаратов химической технологии.

В свою очередь, данная дисциплина является предшествующей дисциплиной для курсов: моделирование химико-технологических процессов нефтехимии, химические реактора, гетерогенный катализ и производство катализаторов, химическая технология производства масел, теоретические основы химической технологии топлива и углеродных материалов, химическая технология топлива и углеродных материалов, перспективные процессы получения топлив, УИРС.

3. 3. Перечень планируемых результатов обучения по дисциплине (модулю) соотнесенных с индикаторами достижения компетенций Таблица 1

Код по	Индикаторы достижения	Планируемые результаты обучения по
ΦΓΟС		дисциплине (ЗУВ)
	Общепро	фессиональные
ОПК-1	ОПК-1.1. Изучает механизмы	Знать теоретические основы химико-
	химических реакций,	технологических процессов; общее
	сопровождающих	представление о структуре химико-
	технологические процессы	технологических систем; типовые химико-
		технологические процессы производства;
	ОПК-1.2.Рассматривает	понимать взаимодействие химического
	химические реакции,	производства и окружающей среде.
	происходящие в окружающем	Уметь составить принципиальную схему
	мире	сложного химического производства и
		объяснить последовательность протекающих
	ОПК-1.3. Анализирует свойства	процессов; охарактеризовать возможные
	химических элементов и	варианты аппаратов, применяемые на каждой
	веществ	стадии производства, их параметры и режим
		работы

Владеть	метод	цами	анали	іза эф	рфективно	сти
работы	химичє	еских	произ	зводсті	з; навыка	ми
расчета	и с	преде	ления	тех	нологичест	ких
показател	ıей	про	цесса;	•	осуществл	атк
технологі	ический	і про	цесс	в сос	тветствии	c
регламент	гом и	и ис	пользо	вать	техничест	кие
средства	для из	вмерен	ия ос	новных	к параметј	ов
технологі	ическог	о проі	цесса.			

4.Объем дисциплины и виды учебной работы

Таблица 2

				Семе	стры
Вид учебі	юй работы	часов/ зач.ед.		5	5
	_	ОФО	ОЗФО	ОФО	ОЗФО
Контактная работа (в	сего):	68/1,8	51/1,4	68/1,8	51/1,4
В том числе:	,				
Лекции		28/0,8	17/0,47	28/0,8	17/0,47
Практические занятия		25/0,6	17/0,47	25/0,6	17/0,47
Лабораторные работы		15/0,4	17/0,47	15/0,4	17/0,47
Самостоятельная работ	а (всего)	112/3	129/3,6	112/3	129/3,6
В том числе:					
Рефераты		20/0,5	20/0,5	20/0,5	20/0,5
Темы для самостоятельно	ой проработки	60/1,7	70/1,9	60/1,7	70/1,9
Презентации					
И (или) другие виды	самостоятельной				
работы:					
Подготовка к лабораторн	ым работам	10/0,2	10/0,2	10/0,2	10/0,2
Подготовка к практическ	им занятиям	10/0,2	20/0,5	10/0,2	20/0,5
Подготовка к экзамену		12/0,3	19/0,5	12/0,3	19/0,5
Вид отчетности	экзамен	экзамен	экзамен	экзамен	
Общая трудоемкость	180	180	180	180	
дисциплины		100	100	100	100
	ВСЕГО в				
	зачетных	5	5	5	5
	единицах				

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 3

№ п/п	Наименование раздела дисциплины по семестрам	лекци	асы юнных ятий	лабора	асы торных ятий	прак к	асы тичес их ятий		сего
	_	ОФО	ОЗФО	ОФО	ОЗФО	ОФО	ОЗФО	ОФО	ОЗФО
1	Основные технологические понятия определения	4	2	2	2	2	2	8	6
2	Равновесие химико- технологических процессов	4	2	4	2	3	2	11	6

3	Скорость химико- технологических процессов	4	2	4	2	2	2	10	6
4	Гетерогенные процессы Каталитические процессы	2	2	3	2	2	2	7	6
5	Основы теории химических реакторов	4	2	2	2	2	2	8	6
6	Сырье вода и энергия в химической промышленности	2	2	2	2	2	2	6	6
7	Промышленная экология. Экологические проблемы химического производства	4	2	2	2	2	2	8	6
8	Технология основного органического синтеза	4	2	2	3	2	3	8	8
9	Производство азотной кислоты.	4	2	2				8	2
10	Производство серной кислоты	4		2				4	
	Всего	28	18	25	17	15	16	68	51

5.2. Лекционные занятия

Таблица 4

$N_{\underline{0}}$	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1	2	3
1	Вводная лекция	Химическая технология как наука. Роль и значение химической
		технологии в народном хозяйстве. Направления в развитии
		химической технологии. Основные продукты химической
		промышленности, динамика и масштабы их производства.
		Технологические понятия и определения.
2	Основные	Понятие о химико-технологическом процессе (XTП). Стадии XTП.
	технологические понятия	Классификация химико-технологических процессов.
	определения	Технологические схемы. Технологический режим. Основные
		критерии эффективности химико-технологических процессов:
		производительность, мощность, интенсивность, степень конверсии,
		селективность, выход продукта. Связь между степенью конверсии,
		селективностью и выходом продукта. Качество готовой продукции.
		Материальный и тепловой баланс химико-технологического
		процесса. Принцип составления материального и теплового
		балансов. Пример составления материального баланса производства
		окиси этилена прямым каталитическим окислением этилена
		воздухом.
3	Равновесие химико-	Смещение равновесия - путь увеличения степени превращения
	технологических	исходных реагентов. Анализ способов смещения равновесия на
	процессов	основе принципа Ле-Шателье. Влияние на состояние равновесия
		температуры, давления концентраций реагентов, продуктов и
		инертных веществ. Способы изменения предельно достижимых
		состояний системы путем смещения химического равновесия.
		Термодинамические расчеты при разработке химико-

		технологических процессов. Каскад реакторов идеального смешения непрерывных. Особенности проведения химико-технологических процессов в каскаде. Материальный баланс и математическая модель процесса в каскаде проточных реакторов смешения. Методы расчета каскада реакторов. Сравнение реакторов различных типов при проведении химических реакций различных типов: простых, обратимых и необратимых, сложных параллельных и последовательных. Выбор типа реактора для конкретной химической реакции на основе химико-технологических критериев: интенсивности, селективности и выхода продукта. Химические реакторы с различным тепловым режимом. Классификация реакторов. Уравнения теплового баланса адиабатических, изотермических и политропических реакторов. Основные способы решения уравнений теплового баланса. Решение уравнения теплового баланса на примере реактора идеального смешения непрерывного в адиабатическом режиме графическим методом. Понятие об устойчивом тепловом режиме работы реакторов. Способы поддержания устойчивого теплового режима работы реактора на примере реактора идеального смешения непрерывного в адиабатическом режиме. Параметрическая чувствительность. Выбор типа реактора с учетом теплового режима. Создание оптимального теплового режима в химических реакторах. Основные практические приемы, обеспечивающие оптимальный температурный режим работы реактора. Конструкции химических реакторов для различных тепловых режимов. Понятие о нестационарных тепловых режимах
4	Скорость химико-технологических процессов	режимах. Кинетические уравнения. Кинетика простых, обратимых, параллельных и последовательных реакций. Способы увеличения скорости гомогенных химических процессов. Влияние температуры на скорость химических уравнений: уравнение Аррениуса. Влияние давления на скорость гомогенных газовых реакций. Необходимость селективного увеличения скорости целевой реакции при проведении сложных реакций. Пути увеличения селективности в сложных процессах: влияние температуры, давления, концентрации реагентов на селективность.
5	Гетерогенные процессы	Классификация гетерогенных процессов. Гетерогенные процессы в системе газ-твердое вещество (Г-Т). Стадии гетерогенного процесса. Влияние различных факторов (температуры, скорости газового потока, степени измельчения твердой фазы) на скорость кинетической и диффузионной стадий. Способы определения лимитирующей стадии гетерогенного процесса. Пути интенсификации гетерогенных процессов. Основные типы аппаратов для проведения высокотемпературных гетерогенных процессов в системе Г-Т.
6	Каталитические процессы	Природа катализа. Гомогенный и гетерогенный катализ. Свойства катализаторов и требования, предъявляемые к ним. Кинетика гетерогенно-каталитических процессов. Скорость реакций в пористых катализаторах. Адсорбционное равновесие на поверхности катализаторов. Виды кинетических уравнений гетерогенно-каталитических процессов. Особенности ферментативного катализа.

7	Основы теории	Классификация химических реакторов. Основные требования,
'	химических реакторов	предъявляемые к химическим реакторам. Структура
	Peantopob	математической модели химического реактора. Уравнения
		математических моделей химических реакторов. Периодический
		реактор идеального смешения. Области применения периодических
		реакторов. Недостатки периодических процессов. Вывод уравнения
		математической модели периодического реактора идеального
		смешения. Реакторы непрерывного действия. Реактор идеального
		вытеснения (РИВ). Допущения модели. Особенности
		гидродинамической обстановки в реакторе, вывод уравнения
		тематической модели. Аналитическое решение уравнения для
		реакций с различной кинетикой. Отклонения от режима идеального
		вытеснения в реальных условиях. Диффузионные (одно- и
		двухпараметрические) модели реакторов. Прочный реактор
		идеального смешения. Вывод уравнения математической модели для
		реактора идеального смешения (РИС). Графический метод
		определения концентрации реагентов на выходе РИВ и РИС для
		проведения простых и сложных реакций по основным технологическим критериям. Каскад реакторов идеального
		технологическим критериям. Каскад реакторов идеального смешения. Допущения модели. Предельные состояния модели.
		Аналитический и графический методы расчета числа секций в
		каскаде реакторов идеального смешения. Тепловые режимы
		химических реакторов. Классификация реакторов по тепловому
		режиму: изотермический, адиабатический и реактор
		промежуточного типа. Уравнение теплового баланса реакторов.
		Совместное решение уравнений материального и теплового
		балансов для различных типов реакторов и реакций с различной
		кинетикой: анализ полученных решений. Оптимальный
		температурный режим и способы его осуществления в химических
		реакторах. Теплообмен в реакторах Выбор типа реакторов в
		зависимости от кинетики химических реакций. Нестационарные
	C	режимы работы химических реакторов.
8	Сырье вода и энергия в	Сырьевая база химической промышленности. Рациональное
	химической	использование природных ресурсов. Комплексное использование
	промышленности	сырья. Использование отходов промышленных предприятий в качестве сырья химической промышленности. Вода в химической
		промышленности. Создание водооборотных циклов. Очистка
		промышленности. Создание водооооротных циклов. Очистка сточных промышленных вод и газовых выбросов. Энергетика
		химической промышленности. Виды и источники энергии,
		применяемые в химической промышленности. Рациональное
		использование энергии. Энерготехнологические схемы и методы их
		анализа.
9	Промышленная экология.	Понятия экологии. Влияние химического производства на
	Экологические проблемы	окружающую среду и человека. Основные направления работ по
	химического производства	охране окружающей среды от промышленных воздействий. Охрана
		окружающей среды от промышленных загрязнений как
		технологическая проблема. Понятие о безотходной и малоотходной
		технологии. Основные направления в ее развитии. Безотходное
		производство в нефтеперерабатывающей и нефтехимической
		промышленности. Сточные воды химических предприятий.
		Возможные источники загрязнения. Основные методы очистки
		сточных вод. Биологическая очистка. Организация систем

		оборотного водоснабжения. Жидкофазные и твердые отходы. Классификация жидкофазных отходов. Рекуперация ценных компонентов. Методы обезвреживания жидкофазных отходов. Источники твердых отходов. Переработка и использование твердых отходов. Газообразные отходы. Характеристика возможных выбросов, меры их предотвращения. Очистка от взвешенных частиц. Способы удаления газообразных токсичных примесей.
10	Технология основного органического синтеза	Производство этилового спирта методом прямой гидратации. Физико-химические основы процесса. Оптимальные условия и показатели процесса. Технологическая схема процесса и устройство реактора. Пути дальнейшего совершенствования процесса. Процессы алкилирования. Химическая схема производства фенола и ацетона кумольным методом. Алкилирование бензола пропиленом. Физико-химические основы процесса. Выбор оптимального технологического режима процесса. Технологическая схема и аппаратурное оформление процесса.
11	Производство азотной кислоты.	Техническое и экономическое значение производства азотной кислоты. Методы производства азотной кислоты. Химическая и принципиальная схема производства разбавленной азотной кислоты из аммиака. Химическая схема производства, основные реакции. Принципиальная схема производства азотной кислоты из аммиака. Физико - химические основы производства. Контактное окисление аммиака.
12	Технология серной кислоты	Значение серной кислоты в народном хозяйстве. Свойства серной кислоты. Основные виды сырья. Методы получения серной кислоты. Получение сернистого газа из серы и сероводорода: основные закономерности и аппаратурное оформление. Контактный метод производства серной кислоты и его стадии. Физико-химические основы окисления сернистого газа. Выбор промышленного катализатора. Подготовка обжигового газа к контактному окислению. Абсорбция серного ангидрида: оптимальные условия проведения процесса и аппаратурное оформление. Принципиальная и технологическая схема контактного производства серной кислоты. Основные направления дальнейшего развития производства серной кислоты.

5.3. Лабораторный практикум

Таблица 5

№ п/п	Наименование раздела дисциплины	Содержание раздела
1	2	3
1	Равновесие химикотехнологических процессов.	Исследование влияния параметров технологического режима на показатели крекинга изооктана в проточном интегральном реакторе.
2	Равновесие химико-технологических процессов.	Исследование влияния параметров технологического режима на показатели крекинга изооктана в проточном дифференциальном реакторе. Исследования процесса синтеза бутадиена из этилового спирта
3	Каталитические процессы.	Адсорбционное разделение парафиновых ароматических углеводородов с использованием синтетических цеолитов.

4	Каталитические процессы.	Исследование влияния факторов на процесс дегидрирования этилбензола в стирол.
5	Промышленная экология. Экологические проблемы химического производства.	Хроматографические методы анализа многокомпонентных газовых смесей
6	Промышленная экология. Экологические проблемы химического производства.	Дегидрирование этилбензола в стирол описание установки и методики работы на ней; отбор продуктов реакции на анализ; проведение хроматографического анализа реакционной массы; расчет конверсии и селективности реакции, материального баланса процесса; построение зависимости конверсии и селективности процесса от условного времени пребывания в реакторе полного смешения или вытеснения.
7	Технология серной кислоты.	Сернокислотная гидратация олефинов (Получение изопропилового спирта (втор-бутилового) спирта сернокислотной гидратацией олефинов) описание установки и методики работы на ней; отбор продуктов реакции на анализ; проведение хроматографического анализа реакционной массы; составление материального баланса двух стадий процесса; расчет выхода продуктов и селективность реакций по пропилену; перегонка реакционной массы в колбе Кляйзена для выделения изопропанола; определение массы полученного изопропанола, показателя преломления, расчет выхода спирта на поглощенный пропилен; построить зависимость селективности от концентрации серной кислоты.
8	Гидратация олефинов.	Исследования процесса синтеза бутадиена из этилового спирта

Кроме указанных в таблице лабораторных работ, преподаватель может дать задание для проведения других лабораторных работ в соответствии с разделами дисциплины.

5.4. Практические занятия

Таблица 7

№ п/п	Наименование раздела дисциплины	Содержание раздела
1	Основные технологические понятия определения.	Расчет основных показателей XTП
2.	Равновесие химикотехнологических процессов. Скорость химикотехнологических процессов. Гетерогенные процесс. Каталитические процессы.	Стехиометрические расчеты в химических процессах. Расчет расходных коэффициентов реагентов и продуктов.
3	Основы теории химических реакторов	Расчет реакторов идеального смешения и идеального вытеснения.
4	Гидратация олефинов	Расчет процесса производства этилового спирта пряной гидратацией этилена
5	Технология серной кислоты.	Расчет процесса производства серной кислоты
6	Производство азотной кислоты.	Расчет процесса производства азотной кислоты

6. Самостоятельная работа студентов по дисциплине

6.1 Текущая самостоятельная работа (СРС)

Текущая самостоятельная работа по дисциплине «Общая химическая технология», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя следующие виды работ:

- изучение тем, вынесенных на самостоятельную проработку;
- выполнение домашних индивидуальных заданий;
- подготовка к практическим работам, подготовка к защите практических работ;
- подготовка к экзамену

6.2 Содержание самостоятельной работы студентов по дисциплине

$N_{\underline{0}}$							
Π/Π	Наименование тем, их содержание						
1	Производство стирола. Технологические свойства и применение стирола. Сырье для						
	производства стирола. Производство стирола дегидрированием этилбензола.						
2	Производство фенола. Технологические свойства и применение фенола. Производство						
	фенола и ацетона окислением изопропилбензола (кумольный методом).						
3	Производство пластических масел						
4	Производство полиэтилена. Получение полиэтилена при высоком давлении. Влияние						
	различных факторов на процесс полимеризации. Производство полиэтилена высокого						
	давления. Производство полиэтилена низкого давления. Переработка и применение						
	полиэтилена.						
5	Производство винилхлорида. Технологические свойства поливинилхлорида.						
	Полимеризация винилхлорида. Производство суспензионного поливинилхлорида.						
	Производство эмульсионного поливинилхлорида. Свойства поливинилхлорида.						
6	Производство полистирола. Технологические свойства полистирола. Полимеризация						
	стирола. Производство блочного полистирола. Производство суспензионного						
	полистирола. Производство эмульсионного полистирола. Свойства и применение						
	полистирола.						
7	Производство фенолоформальдегидных смол. Поликонденсация фенола и						
	формальдегида. Производство новолачных смол. Производство резольных смол.						
	Свойства и применение фенолоформальдегидных.						

6.3 Темы рефератов

No	Наименование тем
Π/Π	
1	Производство серной кислоты.
2	Производство аммиака
3	Производство азотной кислоты
4	Производство минеральных солей.
5	Электрохимические производства
6	Органический синтез.
7	Производство низших ненасыщенных углеводородов.
8	Производство винилхлорида.
9	Производство стирола
10	Производство фенола.

11	Производство пластических масел.
12	Производство полиэтилена.
13	Производство винилхлорида.
14	Производство полистирола.
15	Производство фенолоформальдегидных смол.

Кроме перечисленных тем студентами могут быть выбраны по своему усмотрению и по согласованию с преподавателем другие темы рефератов по изучаемому курсу «Общая химическая технология».

6.6. Учебно-методическое обеспечение самостоятельной работы

Для организации самостоятельной работы бакалавров (выполнения индивидуальных домашних заданий; самостоятельной проработки теоретического материала, подготовки по лекционному материалу; подготовки к практическим занятиям, коллоквиумам) преподавателями кафедры предлагаются следующие учебно-методические пособия и указания, приведенные в пункте 9.

7. Фонды оценочных средств

7.1. Вопросы к первой рубежной аттестации

- 1. Технология как предмет изучения.
- 2. Понятие химико-технологического процесса.
- 3. Стадии, основные технологические показатели.
- 4. Основные направления в развитии химической техники.
- 5. Классификация ХТП.
- 6. Равновесие в технологических процессах.
- 7. Движущая сила процесса.
- 8. Технологические схемы (с открытой цепью; циклические).
- 9. Химические реактора.
- 10. Модели идеальных реакторов вытеснения.
- 11. Модели идеальных реакторов смешения.
- 12. Модели идеальных реакторов периодического действия.
- 13. Реактор полного смешения.
- 14. Каскад реакторов полного смешения (алгебраический метод).
- 15. Каскад реакторов полного смешения (графический метод).
- 16. Реактор периодического действия.
- 17. Температурный режим реакторов.
- 18. Основные типы реакторов.
- 19. Три основных типа зависимые от температурного режима.
- 20. Устойчивость работы реакторов.
- 21.Параметры процесса.
- 22. Характеристика гомогенных химических процессов.
- 23. Адиабатические реактора.
- 24. Уравнение теплового баланса РИВ, работающего в адиабатическом режиме.
- 25.Основные требования к промышленным реакторам.
- 26. Тепловой баланс политермического реактора.
- 27. Изменение температур адиаботического реактора.

Образец экзаменационного билета на первую рубежную аттестацию

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИ УНИВЕРСИТЕТ

имени академика М.Д. Миллионщикова

кафедра «Химическая технология нефти и газа»

Билет №

		DHIJICT J 1-1	
Дисциплина «Общ	ая химическая	н технология»	
Институт нефти и	<u>газа</u> группа <u>Н</u>	<u>HTC -21</u> семестр	<u> 5</u>
1. Основные направлен	ния в развитии	химической технологии.	
2. Классификация XTI	I		
3. Каскад реакторов по	олного смешени	ия (алгебраический метод).
УТВЕРЖДАЮ		-	
«»	2021 г.	Зав. кафедрой	Л.Ш. Махмудова

7.2. Вопросы к второй рубежной аттестации

- 1. Производство серной кислоты (общие сведения о процессе, технологическая схема процесса).
- 2.Процесс контактного окисления аммиака. Схема окисления аммиака на поверхности платины (сплошными линиями обозначены ранее возникшие связи, пунктирными-вновь образующиеся связи).
- 3. Гомогенные процессы в газовой фазе
- 4. Методы получения серной кислоты
- 5.Система газ-жидкость.
- 6. Производство серной кислоты контактным методом из флотационного колчедана.
- 7. Физико химические основы и технологические схемы отдельных стадий производства.
- 8. Реакторы для гомогенных процессов.
- 9.Получение сернистого ангидрида. Принципиальная технологическая схема.
- 10.Окисление сернистого ангидрида на катализаторе.
- 11. Абсорбция серного ангидрида.
- 12. Очистка обжигового газа.
- 13. Технико-экономические показатели.
- 14. Характеристика гомогенных химических процессов.
- 15. Гомогенные процессы в газовой фазе.
- 16. Реакторы для гомогенных процессов.
- 17. Основная реакция для получения целевого продукта.
- 18. Гетерогенные процессы.
- 19.Система газ-твердое.
- 20. Производство аммиака. Методы связывания атмосферного азота.
- 21.Синтез аммиака, стадии процесса. Технологическая схема процесса.
- 22. Производство водорода.
- 23. Технологическая схема производства азотной кислоты.
- 24. Производства азотной кислоты. Способы производства азотной кислоты.
- 25. Принципиальная схема производства азотной кислоты из аммиака.
- 26. Физико-химичекие основы производства азотной кислоты из аммиака.
- 27. Процесс контактного окисления аммиака. Схема окисления аммиака на поверхности платины (сплошными линиями обозначены ранее возникшие связи, пунктирными-вновь образующиеся связи).
- 28.Система газ-твердое.

Образец экзаменационного билета на вторую рубежную аттестацию

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

	Билет №1	
Дисциплина «Общая химическ	сая технология»	
Институт нефти и газа группа	<u>HTC -21</u> семест	rp <u>5</u>
1/	_	-
1. Система газ-жидкость.		
2. Характеристика гомогенных хим	ических процессов	
3. Производство серной кислоты (о	бщие сведения о процессе,	технологическая схема
процесса).	•	
,		
УТВЕРЖДАЮ		
«» 2021 г.	Зав. кафедрой	Л.Ш. Махмудова

7.3. Вопросы к экзамену

- 1. Технология как предмет изучения.
- 2.Понятие химико-технологического процесса.
- 3. Стадии, основные технологические показатели.
- 4. Основные направления в развитии химической техники.
- 5. Классификация ХТП.
- 6. Равновесие в технологических процессах.
- 7. Движущая сила процесса.
- 8. Технологические схемы (с открытой цепью; циклическ).
- 9. Химические реактора.
- 10. Модели идеальных реакторов вытеснения.
- 11. Модели идеальных реакторов смешения.
- 12. Модели идеальных реакторов периодического действия.
- 13. Реактор полного смешения.
- 14. Каскад реакторов полного смешения (алгебраический метод).
- 15. Каскад реакторов полного смешения (графический метод).
- 16. Реактор периодического действия.
- 17. Температурный режим реакторов.
- 18. Основные типы реакторов.
- 19. Три основных типа зависимые от температурного режима.
- 20. Устойчивость работы реакторов.
- 21.Параметры процесса.
- 22. Характеристика гомогенных химических процессов.
- 23. Адиабатические реактора.
- 24. Уравнение теплового баланса РИВ, работающего в адиабатическом режиме.
- 25. Основные требования к промышленным реакторам.
- 26. Тепловой баланс политермического реактора.
- 27.Изменение температур адиаботического реактора.
- 28.Производство серной кислоты (общие сведения о процессе, технологическая схема процесса).
- 29.Процесс контактного окисления аммиака. Схема окисления аммиака на поверхности платины (сплошными линиями обозначены ранее возникшие связи, пунктирными-вновь образующиеся связи).
- 30. Гомогенные процессы в газовой фазе
- 31. Методы получения серной кислоты

- 32.Система газ-жилкость.
- 33. Производство серной кислоты контактным методом из флотационного колчедана.
- 34. Физико химические основы и технологические схемы отдельных стадий производства.
- 35. Реакторы для гомогенных процессов.
- 36.Получение сернистого ангидрида. Принципиальная технологическая схема.
- 37.Окисление сернистого ангидрида на катализаторе.
- 38. Абсорбция серного ангидрида.
- 39.Очистка обжигового газа.
- 40. Технико-экономические показатели.
- 41. Характеристика гомогенных химических процессов.
- 42. Гомогенные процессы в газовой фазе.
- 43. Реакторы для гомогенных процессов.
- 44.Основная реакция для получения целевого продукта.
- 45. Гетерогенные процессы.
- 46.Система газ-твердое.
- 47. Производство аммиака. Методы связывания атмосферного азота.
- 48.Синтез аммиака, стадии процесса. Технологическая схема процесса.
- 49. Производство водорода.
- 50. Технологическая схема производства азотной кислоты.
- 51. Производства азотной кислоты. Способы производства азотной кислоты.
- 52. Принципиальная схема производства азотной кислоты из аммиака.
- 53. Физико-химичекие основы производства азотной кислоты из аммиака.
- 54.Процесс контактного окисления аммиака. Схема окисления аммиака на поверхности платины (сплошными линиями обозначены ранее возникшие связи, пунктирными-вновь образующиеся связи).
- 55.Система газ-твердое.

Образец экзаменационного билета

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

			Билет №1			
Дисципл	ина «Общая х	имическая т	ехнология <i>»</i>			
Инстит	ут нефти и газ	<u>а</u> группа <u>НТ</u>	<u>C -21</u> c	еместр <u>5</u>		
1.Понятия х показатели.		огического пр	оцесса. Стадии, с	основные тех	<u>нологи</u>	ческие
2.Модели действия.	идеальных	реакторов	вытеснения,	смешения	И	периодического
3. Устойчив	вость работы ре	акторов (граф	рик).			
УТВЕРЖД А	МО					
« »		2021 г.	Зав. кафедрой		л.ш.	Махмудова

оцен	7.4. ивани	ие показа	ателей и	ı критер и	ев оцениван	ия компетен	ций на ј	различных	этапах их	формирования,	описание	шкалы

Планируемые результаты		Наименование						
освоения компетенции	(неудовлетворительно)	(удовлетворительно)	(хорошо) (отлично)		оценочного			
					средства			
ОПК-1. Способен изучать, ана	ОПК-1. Способен изучать, анализировать, использовать механизмы химических реакций, происходящих в технологически							
окружающем мире, осно	вываясь на знаниях о ст	роении вещества, при	роде химической связи і	и свойствах различи	ных классов			
	химических эле	ементов, соединений, в	еществ и материалов					
	Фрагментарные знания	Неполные знания	Сформированные, но	Сформированные	Вопросы и			
Знать теоретические основы			содержащие	систематические	билеты к			
химико-технологических			отдельные пробелы	знания	текущим и			
процессов; общее			знания		рубежным			
представление о структуре					аттестациям и			
химико-технологических					к экзамену			
систем; типовые химико- технологические процессы								
производства; понимать								
взаимодействие химического								
производства и окружающей								
среде.								
Variativ	11	11	V	C1				
Уметь составить принципиальную схему	Частичные умения	Неполные умения	Умения полные,	Сформированные				
сложного химического			допускаются	умения				
производства и объяснить			небольшие ошибки					
последовательность								
протекающих процессов;								
охарактеризовать возможные								
варианты аппаратов,								
применяемые на каждой								
стадии производства, их параметры и режим работы								
параметры и режим разоты								

Владеть методами анализа	Частичное владение	Несистематическое	В систематическом	Успешное и	
эффективности работы	навыками	применение навыков	применении навыков	систематическое	
химических производств;			допускаются пробелы	применение	
навыками расчета и			_	навыков	
определения технологических					
показателей процесса;					
осуществлять					
технологический процесс в					
соответствии с регламентом и					
использовать технические					
средства для измерения					
основных параметров					
технологического процесса.					

8. Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации обучающихся созданы фонды оценочных средств, адаптированные для инвалидов и лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе. Форма проведения текущей аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При тестировании для слабовидящих студентов используются фонды оценочных средств с укрупненным шрифтом. На экзамен приглашается сопровождающий, который обеспечивает техническое сопровождение студенту. При необходимости студенту-инвалиду предоставляется дополнительное время для подготовки ответа на экзамене (или зачете). Обучающиеся с ограниченными возможностями здоровья и обучающиеся инвалиды обеспечиваются печатными и электронными образовательными ресурсами (программы, учебные пособия для самостоятельной работы и т.д.) в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- 1) для инвалидов и лиц с ограниченными возможностями здоровья по зрению:
- для слепых: задания для выполнения на семинарах и практических занятиях оформляются рельефно-точечным шрифтом Брайля или в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением для слепых, либо зачитываются ассистентом; письменные задания выполняются на бумаге рельефно-точечным шрифтом Брайля или на компьютере со специализированным программным обеспечением для слепых либо 14 надиктовываются ассистенту; обучающимся для выполнения задания при необходимости предоставляется комплект письменных принадлежностей и бумага для письма рельефно-точечным шрифтом Брайля, компьютер со специализированным программным обеспечением для слепых;
- для слабовидящих: обеспечивается индивидуальное равномерное освещение не менее 300 люкс; обучающимся для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств; задания для выполнения заданий оформляются увеличенным шрифтом;
 - 2) для инвалидов и лиц с ограниченными возможностями здоровья по слуху:
- для глухих и слабослышащих: обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости обучающимся предоставляется звукоусиливающая аппаратура индивидуального пользования; предоставляются услуги сурдопереводчика;
- для слепоглухих допускается присутствие ассистента, оказывающего услуги тифлосурдопереводчика (помимо требований, выполняемых соответственно для слепых и глухих);
- 3) для лиц с тяжелыми нарушениями речи, глухих, слабослышащих лекции и семинары, проводимые в устной форме, проводятся в письменной форме;
- 4) для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата:

- для лиц с нарушениями опорно-двигательного аппарата, нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей: письменные задания выполняются на компьютере со специализированным программным обеспечением или надиктовываются ассистенту; выполнение заданий (тестов, контрольных работ), проводимые в письменной форме, проводятся в устной форме путем опроса, беседы с обучающимся.

9. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература

- 1.А.М. Кутепов, Т.И. Бондарева, М.Г. Беренгартен. Общая химическая технология. М.: ИКЦ «Академкнига». 2007.-524с. Имеется в библиотеке.
- 2. Б.П. Кондауров, В.И. Алексанров, А.В. Артемов. Общая химическая технология. М.: Академия. 2005.- 328с. Имеется на кафедре.
- 3.В.И. Игнатенков, В.С. Бесков. Примеры и задачи по общей химической технологии. М.: ИКЦ «Академкнига». 2006.-195с.
- 4.Тимофеев В.С., Серафимов Л.А., Тимошенко А.В., Принципы технологии основного органического и нефтехимического синтеза: Учеб. пособие для ВУЗов: Изд.3, перер. и доп. Издательство: Высшая школа, 2010г. Имеется в библиотеке.
- 5.Кутепов А.М. Бондарева Т.Н. Беренгартен М.Г. Общая химическая технология: Учеб. для техн вузов. М: Высш. шк. 1985-448c.
- 6.Амелин А.Г. Малахов А.И. Зубова И.Е. Зайцев В.Н. Общая химическая технология. Под ред. профессора Амелина. А. Г.- М.: Химия. 1977-400с.
- 7.Стадицкий Г.В. Родионов А.И. Экология: Учебн. пособие для химика-технолога Вузов.-М.: Высш. шк. 1988-272с.
- 8Левеншпиль О. Инженерное оформление химических процессов. -Химия. 1969-624с.
- 9. Кафаров В.В. Методы кибернетики в химии и химической технологии. Издание 3-е, переработанное и дополненное. М.: Химия. 1976-496с.
- 10.Общие основы химической технологии. Разработка и проектирование технологических процессов. Под ред. профессора Бретшнайдера С. Л. -М.: Химия. 1977-483с.
- 11. Расчеты химико-технологических процессов. Под ред. профессора Мухленова И.И. Л.: Химия. 1982-242с.
- 12.Паушкин Я.М. Адельсон СВ. Вишнякова Т.П. Технология нефтехимического синтеза. 4.1-М.: Химия. 1973-448c.

9.4. Методические указания по освоению дисциплины «Общая химическая технология » приведены в Приложение 1.

10. Материально-техническое обеспечение дисциплины

- 1. Лаборатория для проведения синтезов по органическому синтезу и анализа качества нефтепродуктов и продуктов нефтехимического и органического синтеза.
- 2. Класс с персональными компьютерами для проведения практических расчетов по данным, полученным в ходе лабораторных работ и их оформления.

Методические указания по освоению дисциплины «Общая химическая технология»

1. Методические указания для обучающихся по планированию и организации времени, необходимого для освоения дисциплины.

Изучение рекомендуется начать с ознакомления с рабочей программой дисциплины, ее структурой и содержанием разделов (модулей), фондом оценочных средств, ознакомиться с учебно-методическим и информационным обеспечением дисциплины.

Дисциплина «Общая химическая технология» состоит из <u>11</u> связанных между собою тем, обеспечивающих последовательное изучение материала.

Обучение по дисциплине «Общая химическая технология» осуществляется в следующих формах:

- 1. Аудиторные занятия (<u>лекции, практические/семинарские занятия</u>).
- 2. Самостоятельная работа студента (подготовка к лекциям, практическим занятиям, рефератам и иным формам письменных работ, выполнение анализа кейсов, индивидуальная консультация с преподавателем).
- 3. Интерактивные формы проведения занятий (коллоквиум, лекция-дискуссия, групповое решение кейса и др. формы).

Учебный материал структурирован и изучение дисциплины производится в тематической последовательности. Каждому <u>практическому и семинарскому занятию</u> и самостоятельному изучению материала предшествует лекция по данной теме. Обучающиеся самостоятельно проводят предварительную подготовку к занятию, принимают активное и творческое участие в обсуждении теоретических вопросов, разборе проблемных ситуаций и поисков путей их решения. Многие проблемы, изучаемые в курсе, носят дискуссионный характер, что предполагает интерактивный характер проведения занятий на конкретных примерах.

Описание последовательности действий обучающегося:

При изучении курса следует внимательно слушать и конспектировать материал, излагаемый на аудиторных занятиях. Для его понимания и качественного усвоения рекомендуется следующая последовательность действий:

- 1. После окончания учебных занятий для закрепления материала просмотреть и обдумать текст лекции, прослушанной сегодня, разобрать рассмотренные примеры (10-15 минут).
- 2. При подготовке к лекции следующего дня повторить текст предыдущей лекции, подумать о том, какая может быть следующая тема (10 15 минут).
- 3. В течение недели выбрать время для работы с литературой в библиотеке (по 1 часу).
- 4. При подготовке к <u>практическому/ семинарскому занятию</u> повторить основные понятия по теме, изучить примеры. Решая конкретную ситуацию, предварительно понять, какой теоретический материал нужно использовать. Наметить план решения, попробовать на его основе решить 1 2 практические ситуации.

2. Методические указания по работе обучающихся во время проведения лекций.

Лекции дают обучающимся систематизированные знания по дисциплине, концентрируют их внимание на наиболее сложных и важных вопросах. Лекции обычно излагаются в традиционном или в проблемном стиле. Для студентов в большинстве случаев в проблемном стиле. Проблемный стиль позволяет стимулировать активную познавательную деятельность обучающихся и их интерес к дисциплине, формировать творческое мышление, прибегать к противопоставлениям и сравнениям, делать обобщения, активизировать внимание обучающихся путем постановки проблемных вопросов, поощрять дискуссию.

Во время лекционных занятий рекомендуется вести конспектирование учебного материала, обращать внимание на формулировки и категории, раскрывающие суть того или иного явления, или процессов, выводы и практические рекомендации.

Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, которые делает преподаватель, отмечая наиболее важные моменты в лекционном материале замечаниями «важно», «хорошо запомнить» и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения.

Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста.

Работая над конспектом лекций, необходимо использовать не только основную литературу, но и ту литературу, которую дополнительно рекомендовал преподаватель. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

Тематика лекций дается в рабочей программе дисциплины.

3. Методические указания обучающимся по подготовке к практическим/семинарским занятиям.

На <u>практических/семинарских</u> занятиях приветствуется активное участие в обсуждении конкретных ситуаций, способность на основе полученных знаний находить наиболее эффективные решения поставленных проблем, уметь находить полезный дополнительныйматериал по тематике семинарских занятий.

Студенту рекомендуется следующая схема подготовки к семинарскому занятию:

- 1. Ознакомление с планом <u>практического/семинарского</u> занятия, который отражает содержаниепредложенной темы;
 - 2. Проработать конспект лекций;
 - 3. Прочитать основную и дополнительную литературу.
- В процессе подготовки к практическим занятиям, необходимо обратить особое внимание на самостоятельное изучение рекомендованной литературы. При всей полноте конспектирования лекции в ней невозможно изложить весь материал из-за лимита аудиторных часов. Поэтому самостоятельная работа с учебниками, учебными пособиями, научной, справочной литературой, материалами периодических изданий и Интернета является наиболее эффективным методом получения дополнительных знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов отношение к конкретной проблеме. Все новые понятия по изучаемой теме необходимо выучить наизусть и внести в глоссарий, который целесообразно вести с самого начала изучения курса;
 - 4. Ответить на вопросы плана практического/семинарского занятия;
 - 5. Выполнить домашнее задание;
 - 6. Проработать тестовые задания и задачи;
 - 7. При затруднениях сформулировать вопросы к преподавателю.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, выступать и участвовать в коллективном обсуждении вопросов изучаемой темы, правильно выполнять практические задания и иные задания, которые даются в фонде оценочных средств дисциплины.

4. Методические указания обучающимся по организации самостоятельной работы.

Цель организации самостоятельной работы по дисциплине <u>«Общая химическая</u> <u>технология</u>» - это углубление и расширение знаний в области освоения курса <u>«Общая химическая технология</u>»; формирование навыка и интереса к самостоятельной

познавательной деятельности.

Самостоятельная работа обучающихся является важнейшим видом освоения содержания дисциплины, подготовки к практическим занятиям и к контрольной работе. Сюда же относятся и самостоятельное углубленное изучение тем дисциплины. Самостоятельная работа представляет собой постоянно действующую систему, основу образовательного процесса и носит исследовательский характер, что послужит в будущем основанием для написания выпускной квалификационной работы, практического применения полученных знаний.

Организация самостоятельной работы обучающихся ориентируется на активные методы овладения знаниями, развитие творческих способностей, переход от поточного к индивидуализированному обучению, с учетом потребностей и возможностей личности.

Правильная организация самостоятельных учебных занятий, их систематичность, целесообразное планирование рабочего времени позволяет студентам развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивать высокий уровень успеваемости в период обучения, получить навыки повышения профессионального уровня.

Подготовка к практическому занятию включает, кроме проработки конспекта и презентации лекции, поиск литературы (по рекомендованным спискам и самостоятельно), подготовку заготовок для выступлений по вопросам, выносимым для обсуждения по конкретной теме. Такие заготовки могут включать цитаты, факты, сопоставлениеразличных позиций, собственные мысли. Если проблема заинтересовала обучающегося, он может подготовить реферат и выступить с ним на практическом занятии. Практическоезанятие это, прежде всего, дискуссия, обсуждение конкретной ситуации, то есть предполагает умение внимательно слушать членов малой группы и модератора, а также стараться высказать свое мнение, высказывать собственные идеи и предложения, уточнятьи задавать вопросы коллегам по обсуждению.

При подготовке к контрольной работе обучающийся должен повторять пройденный материал в строгом соответствии с учебной программой, используя конспект лекций и литературу, рекомендованную преподавателем. При необходимости можно обратиться за консультацией и методической помощью к преподавателю.

Самостоятельная работа реализуется:

- непосредственно в процессе аудиторных занятий на лекциях, практических занятиях;
- в контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- в библиотеке, дома, на кафедре при выполнении обучающимся учебных и практических задач.

Вилы СРС

- 1. Реферат
- 2. Доклад
- 3. Презентации
- 4. Подготовка к практическим занятиям.
- 5. Участие в мероприятиях: коллоквиумах, семинарах, конференциях, обсуждениях и т. д.

Темы для самостоятельной работы прописаны в рабочей программе дисциплины. Эффективным средством осуществления обучающимся самостоятельной работы является электронная информационно-образовательная среда университета, которая обеспечивает доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем

Составитель:	/	
Доцент кафедры «ХТНГ»	Muf	/Мусаева М.А/
СОГЛАСОВАНО:		
	Maxieyibe	
Заведующий кафедрой «ХТНГ»		/Махмудова Л.Ш

Директор ДУМР: /Магомаева М.А./