Документ подписан простой электронной подписью

Информация МИЛНИСТЕРСТВО ОБРАЗОВАНИЯ И НА УКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: Минцаев Магомед Шавалович

Должность: ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

Дата подписания: 14.09.2023 13:44:09 **УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ**

Уникальный потраминый ком ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» <u>ИМЕНИ АКАДЕМИКА М.Д</u>. МИЛЛИОНЩИКОВА

ИНСТИТУТ ЭНЕРГЕТИКИ

Кафедра «Теплотехника и гидравлика»

УТВЕРЖДЕН

на заседании кафедры

« <u>10</u> » <u>июня 2023 г., протокол №10</u>

Заведующий кафедрой

Р.А-В. Турлуев

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«ГАЗОТУРБИННЫЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ»

Направление подготовки

13.04.01 - «Теплоэнергетика и теплотехника»

Направленность (профиль)

«Теплоэнергетика и теплотехника»

Квалификация

Магистр

Составитель (и) Р.А-В. Турлуев

Грозный – 2023

1. Фонды оценочных средств

Паспорт фонда оценочных средств дисциплины «Газотурбинные технологии производства электрической и тепловой энергии»

N ₂ π/π	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Элементы технической термодинамики	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР
2	Рабочие процессы в газотурбинных установках	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР
3	Основные характеристики и показатели работы газотурбинной установки.	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР
4	Конструктивные особенности газотурбинных установок	ПК-2	Опрос. Лабораторное и практическое занятие. Защита ИТР
5	Вопросы охлаждения деталей газовых турбин.	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР
6	Режимы работы газотурбинных установок.	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР
7	Газотурбинная установка как двигатель тепловых электростанций	ПК-2	Опрос. Лабораторное и практическое, занятие. Защита ИТР

2. ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

Nº п/п	Наименование оценочного средств	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1.	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу учебной дисциплины	Комплект контрольных вопросов
2.	ИТР	Средство проверки умений применять полученные знания по заранее определенной методике для решения задач или заданий по модулю или дисциплине в целом	Комплект заданий для выполнения ИТР
3.	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебноисследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее	Темы рефератов
4.	Лабораторная	Дидактический комплекс,	Темы лабораторных

	работа	предназначенный для работы	работ
		обучающегося и позволяющий	Вопросы по темам /
		оценивать уровень усвоения им	разделам
		учебного материала	дисциплины
		Дидактический комплекс,	темы практических
	Практическая работа	предназначенный для работы	работ
5		обучающегося и позволяющий	Вопросы по темам /
		оценивать уровень усвоения им	разделам
		учебного материала	дисциплины
	Зачет	Итоговая форма оценки знаний	Вопросы к зачету

3.1 Комплект заданий для практических работ:

Таблица

№ п/п	Наименование раздела дисциплины	Содержание раздела
1	Элементы технической термодинамики	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ.
2	Рабочие процессы в газотурбинных установках	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности.
3	Основные характеристики и показатели работы газотурбинной установки.	Зависимость величины полезной удельной работы простой ГТУ от степени повышения давления.
4	Конструктивные особенности газотурбинных установок	Конструктивная схема ГТУ с встроенной камерой сгорания. Конструктивная схема ГТУ с разрезным валом и выносной камерой сгорания. Схема консольного ротора
5	Вопросы охлаждения деталей газовых турбин.	Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего агента) в системах охлаждения газовых турбин. Газообразные теплоносители. Теплофизические свойства теплоносителей
6	Режимы работы газотурбинных установок.	Способы регулирования газотурбинных установок. Два способа регулирования мощности ГТУ: количественный, качественный
7	Газотурбинная установка как двигатель тепловых электростанций	Недостатки ГТУ при сравнении их с ПТУ. Технические требования к энергетическим газотурбинным установкам.

Критерии оценки ответов на практические работы:

- не зачтено выставляется студенту, если студент не обладает достаточным уровнем теоретических знаний (не знает методики выполнения практических навыков, показаний и противопоказаний, возможных осложнений, нормативы и проч.) и/или не может самостоятельно продемонстрировать практические умения или выполняет их, допуская грубые ошибки. В результате «не зачтено» студент не получает баллы за практическую работу.

- зачтено выставляется студенту, если студент обладает теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), самостоятельно демонстрирует выполнение практических умений, допуская некоторые неточности (малосущественные ошибки), которые самостоятельно обнаруживает и быстро исправляет. Признанием факта выполнения практической работы является - «зачтено», бальный эквивалент которого может составлять до трех балла по бально-рейтинговой системе.

3.2 ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

No	T		
п/п	Темы для самостоятельного изучения		
1	Исследование режимов работы энергетических ГТУ		
2	Исследование влияния и климатических характеристик на показатели экономичности энергетических ГТУ		
3	Исследование работы одноконтурной парогазовой ТЭС с котлом-утилизатором		
4	Исследование работы двухконтурной парогазовой ТЭС с котлом-утилизатором		
5	Способы повышения экономичности ГТУ.		
6	Устройство основных элементов газотурбинных установок		
7	Моделирование режимов работы ГТУ ТЭЦ. Оптимизация характеристик, оборудования и		
8	Устройство основных элементов газотурбинных установок.		
9	Способы повышения экономичности ГТУ.		
10	Устройство основных элементов газотурбинных установок.		
11	Моделирование режимов работы ГТУ ТЭЦ.		
12	Оптимизация характеристик, оборудования и технических решений при разработке ГТУ-ТЭЦ.		
13	Техническое обслуживание ГТУ.		
14	Топливное хозяйство ГТУ.		
15	Моделирование режимов работы ГТУ ТЭЦ.		
16	Технологические решения и тепловые схемы ПГУ ТЭС для техперевооружения.		

Критерии оценки:

- не зачтено выставляется студенту, если дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- зачтено выставляется студенту, если дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. Могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа.

3.3 ТЕМЫ ИТР ПО ДИСЦИПЛИНЕ

- 1. Тепловые расчеты простой ГТУ
- 2. Тепловой расчет ГТУ с регенерацией
- 3. Расчет ПГУ с полузависимой схемой
- 4. Расчет выбросов ПГУ в атмосферу
- 5. Расчет основных размеров и показателей оборудования ГТУ (компрессора, камеры сгорания, турбины)
- 6. Тепловой расчет котла-утилизатора ПГУ

Критерии оценки выполнения практических заданий:

N₂	Критерии оценивания	Оценка
1	- полный ответ на поставленный вопрос, который в целом изложен логично и последовательно, не требует дополнительных пояснений; - ответ самостоятельный, использованы ранее приобретенные знания.	(отлично)
2	- раскрыто основное содержание материала; - ответ на поставленный вопрос изложен логично и последовательно, но требует незначительных уточнений.	(хорошо)
3	- усвоено основное содержание учебного материала, но изложено фрагментарно, не всегда последовательно; - допущены нарушения последовательности изложения материала.	(удовлетвори тельно)
4	- фрагментарный ответ; - основное содержание учебного материала не раскрыто; - допущены грубые ошибки в определении понятий, при использовании формул.	(неудовлетво рительно)

ВОПРОСЫ К КОНТРОЛЬНАЯ РАБОТАМ

ПРИМЕРЫ ВОПРОСОВ

- 1. Схема и цикл простейшей газотурбинной установки открытого типа.
- 2. Работа турбины, работа цикла в ГТУ простого цикла.
- 3. Расход воздуха, газа и расход топлива в ГТУ простого цикла.
- 4. Мощность ГТУ простого цикла, термический КПД, абсолютный электрический КПД.
- 5. Способы повышения тепловой экономичности ГТУ.
- 6. Достоинства и недостатки ГТУ.
- 7. Схема и цикл ГТУ со ступенчатым сжатием воздуха.
- 8. Работа турбины, работа цикла в ГТУ со ступенчатым сжатием воздуха.
- 9. Расход воздуха, газа и расход топлива в ГТУ со ступенчатым сжатием воздуха.
- 10. Мощность ГТУ, термический КПД, абсолютный электрический КПД ГТУ со ступенчатым сжатием воздуха.

Критерии оценки выполнения заданий:

- не зачтено задание не выполнено (не найден правильныйответ)
- зачтено задание выполнено полностью

ТЕМЫ ПРАКТИЧЕСКИХ РАБОТ

Тема 1. Элементы технической термодинамики

Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ.

Тема 2. Рабочие процессы в газотурбинных установках

Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности.

Тема 3. Основные характеристики и показатели работы газотурбинной установки.

Зависимость величины полезной удельной работы простой ГТУ от степени повышения давления.

Тема 4. Конструктивные особенности газотурбинных установок

Конструктивная схема ГТУ с встроенной камерой сгорания. Конструктивная схема ГТУ с разрезным валом и выносной камерой сгорания. Схема консольного ротора

Тема 5. Вопросы охлаждения деталей газовых турбин.

Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего агента) в системах охлаждения газовых турбин. Газообразные теплоносители. Теплофизические свойства теплоносителей

Тема 6. Режимы работы газотурбинных установок.

Способы регулирования газотурбинных установок. Два способа регулирования мощности ГТУ: количественный, качественный

Тема 7. Газотурбинная установка как двигатель тепловых электростанций Недостатки ГТУ при сравнении их с ПТУ. Технические требования к энергетическим газотурбинным установкам

Критерии оценки:

- не зачтено выставляется студенту, если дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- зачтено выставляется студенту, если дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. Могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа.

Примеры вопросов к тестам по дисциплине «Газотурбинные и парогазовые ТЭС»

- 1. В чем физически заключается выигрыш от промежуточного охлаждения рабочего тела при сжатии в компрессоре?
- 2. Зачем нужно разделение воздуха на первичный и вторичный в КС ГТУ?
- 3. Как достигается разделение воздуха на первичный и вторичный в КС ГТУ?
- 4. Как достигается турбулизация потока в камерах сгорания ГТУ?
- 5. Какие типы камер сгорания используются в ГТУ?
- 6. Что такое стехиометрический коэффициент L0?
- 7. Чему примерно равен стехиометрический коэффициент L0 для углеводородных топлив?
- 8. Что такое коэффициент избытка воздуха?
- 9. В каких пределах находится значение коэффициента избытка воздуха в ГТУ?
- 10. В чем заключается основная задача расчета тепловой схемы ГТУ?
- 11. Каким образом охлаждение элементов турбин позволяет увеличить КПД ГТУ?
- 12. Почему имеется предел, выше которого охлаждение лопаток и дисков турбин ГТУ не приводит к увеличению КПД?
- 13. Что такое характеристика компрессора ГТУ?
- 14. Что такое характеристика ГТУ?
- 15. Как определяется приведенный расход воздуха в ГТУ?

- 16. Как определяется приведенная частота вращения ГТУ?
- 17. Почему для ГТУ закрытого типа можно значительно повысить единичную мощность агрегата по сравнению с ГТУ открытого типа?
- 18. Как происходит регулирование мощности ГТУ закрытого типа?
- 19. Какая мощность турбоагрегата больше?

Критерии оценки:

- не зачтено выставляется студенту, если дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- зачтено выставляется студенту, если дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. Могут быть допущены недочеты.

3.5 ТЕМЫ РЕФЕРАТОВ

1.	Способы реализации цикла Брайтона. Потери в проточной части паровой турбины.
	Цикл Ренкина. Принципиальное отличие ДВС и ГТУ
2.	Две модификации цикла Брайтона. Цикл с подводом теплоты при постоянном
	давлении. Цикл с поводом теплоты при постоянном объеме
3.	Установки непрерывного и прерывистого горения. Принципиальная схема установки
	для реализации цикла Брайтона
4.	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по
	регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ
5.	Термодинамические параметры состояния и функции процесса. Феноменологический
	метод термодинамики. Статистический (или физический) метод термодинамики.
	Рабочее тело
6.	Интенсивные и экстенсивные параметры состояния, уравнение состояния.
	Термодинамический процесс. Температурный напор, или градиент температур.
	Функции процесса
7.	Первый закон термодинамики в форме Лагранжа. Закон Авогадро.
	Дифференциальная форма первого закона термодинамики для выделенного элемента
	с массой т
8.	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс,
	показатель адиабаты, изотермический процесс, политропный (политропический)
	процесс, показатель политропы
9.	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия.
	Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
10.	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип
	«карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом
	пара
11.	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ
12.	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
13.	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания

	баланса камеры сгорания
15.	Формула для определения коэффициента избытка воздуха. Определение массы
	дожигаемого топлива. Коэффициент избытка воздуха после камеры дожигания
16.	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине.
	Степень понижения давления в турбине
17.	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы,
	связанные с расширением. Понятие внутреннего (или адиабатического) КПД
18.	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной
	ступени. Активная и чисто реактивная. Турбина. Кинематическая степень
	реактивности
19.	Принципиальная технологическая схема и термодинамический цикл простейшей
	ГТУ, работающей на природном газе
20.	Удельная работа турбины. Удельная работа, потребляемая компрессором
21.	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
22.	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент
23.	Зависимость величины полезной удельной работы простой ГТУ от степени
	повышения давления
24.	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и
	степени повышения давления
25.	Конструктивные особенности газотурбинных установок.
	Основные отличия ГТУ и ПТУ, влияющие на конструкторские решения
26.	Назначение и эксплуатация стационарных и транспортных ГТУ. Основные
	характерные особенности ГТУ.
	Конструктивные схемы ГТУ
27.	Конструктивная схема ГТУ с встроенной камерой сгорания. Конструктивная схема
	ГТУ с разрезным валом и выносной камерой сгорания. Схема консольного ротора
28.	Расчет критической частоты вращения для консольных роторов. Конструктивная
	схема ротора ГТУ GT 35. Конструктивная схема ГТУ-100-750 ЛМ3
29.	Турбодетандеры. Общие принципы компоновки и конструкции.
	Газовые турбины. Ротор газовой турбины
30.	Конструктивные варианты роторов газовых турбин. Рабочие лопатки турбины
31.	Геометрия елочного хвоста рабочей лопатки. Способы осевой фиксации рабочих
20	лопаток турбины с елочным хвостом
32.	Компрессоры. Конструкция осевых компрессоров ГТУ. Лабиринтные уплотнения ГТУ
33.	Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера сгорания
34.	Основные характеристики камер сгорания ГТУ:
J 4.	- коэффициент потери давления;
	- коэффициент потери давления; - коэффициент полезного действия;
	- неравномерность поля температур;
	- теплонапряженность рабочего объема;
	- срывные характеристики;
	- содержание вредных выбросов в продуктах сгорания
35.	Системы очистки и охлаждения воздуха перед компрессором, система
	шумоглушения, антипомпажная система, устройство для промывки компрессора,
	система топливоподачи, маслоснабжения, электроснабжения, противопожарная
	система
36.	Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения
	газовой турбины. Способы охлаждения турбинных лопаток
37.	Наружное охлаждение. Парциальный подвод охлаждающего агента по некоторому
	сектору проточной части турбины. Заградительное охлаждение
38.	Типы заградительного охлаждения: пленочное охлаждение, пористое охлаждение.
	Внутреннее охлаждение. Типы лопаток с внутренним охлаждением
39.	Термосифонное охлаждение. Схема лопаток с термосифонным охлаждением.

	Корневое охлаждение
40.	Оценка эффективности охлаждения. Понятие безразмерной температуры лопатки.
	Удельный расход охладителя. Расход охлаждающего агента.
41.	Безразмерный параметр охлаждения. Сравнительная эффективность способов
	воздушного охлаждения лопаток. Влияние охлаждения на КПД ступени
42.	Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего
,	агента) в системах охлаждения газовых турбин
43.	Газообразные теплоносители. Теплофизические свойства теплоносителей.
	Жидкостные теплоносители. Критический тепловой поток
44.	Кризис теплообмена первого рода. Газо-жидкостные теплоносители. Использования
	пара для охлаждения турбин
45.	Степень паровой парциальности. Зависимость необходимой величины паровой
	парциальности от температуры газового потока
46.	Принципиальная схема проточной части гипотетической газопаровой турбины с
	двухъярусными лопатками
47.	Режимы работы газотурбинных установок. Рабочие режимы газотурбинных
	установок. Мощности (режимы) ГТУ
48.	Режим холостого хода, режимы перегрузки. Динамические режимы ГТУ: пусковой
	режим, переходные режимы. Динамические характеристики ГТУ
49.	Вопросы подобия в теории турбомашин как агрегатов в целом, так и отдельных
	процессов в них. Геометрическое подобие
50.	Динамическое подобие. Кинематическое подобие. Критерии, характеризующие
	режимы работы турбины
51.	Статические характеристики газотурбинных установок. расчетные методы
	построения характеристик турбины, относительная степень повышения давления,
	безразмерный расход воздуха.
52.	Совмещенная характеристика компрессора и турбины одновальной ГТУ.
	Относительные режимные характеристики одновальной ГТУ
53.	Режимы пуска и остановки ГТУ. Четыре основных этапа процесса пуска одновальной
	ГТУ
54.	Штатный и аварийный режим остановки ГТУ
55.	Способы регулирования газотурбинных установок. Два способа регулирования
	мощности ГТУ: количественный, качественный
56.	Сравнение эффективности двухвальной и одновальной ГТУ на частичных нагрузках.
	Управление работой газотурбинных установок
57.	Автоматизированные системы управления основным и вспомогательным
	оборудованием (САУ). Основные функции САУ
58.	Газотурбинная установка как двигатель тепловых электростанций. Сравнение
	газотурбинных установок с другими тепловыми двигателями
59.	Технические и эксплуатационные достоинства ГТУ по сравнению с ПТУ.
	Недостатки ГТУ при сравнении их с ПТУ
60.	Технические требования к энергетическим газотурбинным установкам
61.	Характеристики газотурбинных установок и фирмы, производящие газотурбинные
	установки. Характеристики отдельных современных ГТУ

- **«не зачтено» выставляется студенту, если** подготовлен некачественный реферат: тема не раскрыта, в изложении реферата отсутствует четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений.
- **«зачтено» выставляется студенту, если** подготовлен качественный реферат: тема хорошо раскрыта, в изложении реферата прослеживается четкая структура логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Студент свободно апеллирует терминами науки, демонстрирует авторскую позицию. Способен ответить на дополнительные вопросы по теме доклада (1-2 вопроса).

4. Оценочные средства

4.1 Вопросы к первому текущему контролю освоения дисциплины «Газотурбинные технологии производства электрической и тепловой энергии»

- 1. Способы реализации цикла Брайтона. Потери в проточной части паровой турбины. Цикл Ренкина. Принципиальное отличие ДВС и ГТУ
- 2. Две модификации цикла Брайтона. Цикл с подводом теплоты при постоянном давлении. Цикл с поводом теплоты при постоянном объеме
- 3. Установки непрерывного и прерывистого горения. Принципиальная схема установки для реализации цикла Брайтона
- 4. Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ
- 5. Термодинамические параметры состояния и функции процесса. Феноменологический метод термодинамики. Статистический (или физический) метод термодинамики. Рабочее тело.
- 6. Интенсивные и экстенсивные параметры состояния, уравнение состояния. Термодинамический процесс. Температурный напор, или градиент температур.
- 7. Первый закон термодинамики в форме Лагранжа. Закон Авогадро. Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m
- 8. Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс, показатель адиабаты, изотермический процесс, политропный (политропический) процесс, показатель политропы
- 9. Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия. Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
- 10. Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип «карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом пара
- 11. Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с двухступенчатым подводом тепла. Процесс регенерации в ГТУ
- 12. Рабочие процессы в газотурбинных установках. Степень повышения давления в компрессоре. Понятие идеального компрессора
- 13. Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах сгорания и дожигания
- 14. Схема материальных потоков и параметров камеры сгорания. Уравнение теплового баланса камеры сгорания
- 15. Формула для определения коэффициента избытка воздуха. Определение массы дожигаемого топлива. Коэффициент избытка воздуха после камеры дожигания
- 16. Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине. Степень понижения давления в турбине
- 17. Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы, связанные с расширением. Понятие внутреннего (или адиабатического) КПД
- 18. Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
- 19. Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ, работающей на природном газе
- 20. Удельная работа турбины. Удельная работа, потребляемая компрессором
- 21. Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
- 22. Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент
- 23. Зависимость величины полезной удельной работы простой ГТУ от степени повышения давления

24. Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени повышения давления

Образец билета к первому текущему контролю знаний по дисциплине

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 1		
	Первый текущий контроль знаний		
	Дисциплина: «Газотурбинные технологии производства электрической и		
	тепловой энергии»		
1	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени		
	повышения давления		
2	Зависимость величины полезной удельной работы простой ГТУ от степени		
	повышения давления		
3	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент		
	Зав. кафедрой «Т и Г» Р.А-В.Турлуев « »		

4.2 Вопросы ко второму текущему контролю освоения дисциплины «Газотурбинные технологии производства электрической и тепловой энергии»

- 1. Компрессоры. Конструкция осевых компрессоров ГТУ. Лабиринтные уплотнения ГТУ
- 2. Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера сгорания
- 3. Системы очистки и охлаждения воздуха перед компрессором, система шумоглушения, антипомпажная система, устройство для промывки компрессора, система топливоподачи, маслоснабжения, электроснабжения, противопожарная система
- 4. Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения газовой турбины. Способы охлаждения турбинных лопаток
- 5. Наружное охлаждение. Парциальный подвод охлаждающего агента по некоторому сектору проточной части турбины. Заградительное охлаждение
- 6. Типы заградительного охлаждения: пленочное охлаждение, пористое охлаждение. Внутреннее охлаждение. Типы лопаток с внутренним охлаждением
- 7. Термосифонное охлаждение. Схема лопаток с термосифонным охлаждением. Корневое охлаждение
- 8. Оценка эффективности охлаждения. Понятие безразмерной температуры лопатки. Удельный расход охладителя. Расход охлаждающего агента.
- 9. Безразмерный параметр охлаждения. Сравнительная эффективность способов воздушного охлаждения лопаток. Влияние охлаждения на КПД ступени
- 10. Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего агента) в системах охлаждения газовых турбин
- 11. Газообразные теплоносители. Теплофизические свойства теплоносителей. Жидкостные теплоносители. Критический тепловой поток
- 12. Кризис теплообмена первого рода. Газо-жидкостные теплоносители. Использования пара для охлаждения турбин
- 13. Степень паровой парциальности. Зависимость необходимой величины паровой парциальности от температуры газового потока
- 14. Принципиальная схема проточной части гипотетической газопаровой турбины с двухъярусными лопатками

- 15. Режимы работы газотурбинных установок. Рабочие режимы газотурбинных установок. Мощности (режимы) ГТУ
- 16. Режим холостого хода, режимы перегрузки. Динамические режимы ГТУ: пусковой режим, переходные режимы. Динамические характеристики ГТУ
- 17. Вопросы подобия в теории турбомашин как агрегатов в целом, так и отдельных процессов в них. Геометрическое подобие
- 18. Динамическое подобие. Кинематическое подобие. Критерии, характеризующие режимы работы турбины
- 19. Статические характеристики газотурбинных установок. расчетные методы построения характеристик турбины, относительная степень повышения давления, безразмерный расход воздуха.
- 20. Совмещенная характеристика компрессора и турбины одновальной ГТУ. Относительные режимные характеристики одновальной ГТУ
- 21. Режимы пуска и остановки ГТУ. Четыре основных этапа процесса пуска одновальной ГТУ
- 22. Штатный и аварийный режим остановки ГТУ
- 23. Способы регулирования газотурбинных установок. Два способа регулирования мощности ГТУ: количественный, качественный
- 24. Сравнение эффективности двухвальной и одновальной ГТУ на частичных нагрузках. Управление работой газотурбинных установок

Образец билета ко второму текущему контролю освоения дисциплины

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 1	
	Второй текущий контроль знаний	
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »	
1	Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера сгорания	
2	Системы очистки и охлаждения воздуха перед компрессором, система шумоглушения,	
	антипомпажная система, устройство для промывки компрессора, система	
	топливоподачи, маслоснабжения, электроснабжения, противопожарная система	
3	Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения газовой	
	турбины. Способы охлаждения турбинных лопаток	
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »	

Критерии оценки:

- не зачтено выставляется студенту, если дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Студент не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа студента не только на поставленный вопрос, но и на другие вопросы дисциплины.
- **зачтено выставляется студенту, если** дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность,

отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. Могут быть допущены недочеты в определении понятий, исправленные студентом самостоятельно в процессе ответа.

4.3 Вопросы к экзамену по дисциплине «Газотурбинные технологии производства электрической и тепловой энергии»

		Код и наименование компетенции
1	Способы реализации цикла Брайтона. Потери в проточной части паровой турбины. Цикл Ренкина. Принципиальное отличие ДВС и ГТУ	ПК-2
2	Две модификации цикла Брайтона. Цикл с подводом теплоты при постоянном давлении. Цикл с поводом теплоты при постоянном объеме	
3	Установки непрерывного и прерывистого горения. Принципиальная схема установки для реализации цикла Брайтона	
4	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ	
5	Термодинамические параметры состояния и функции процесса. Феноменологический метод термодинамики. Статистический (или физический) метод термодинамики. Рабочее тело	ПК-2
6	Интенсивные и экстенсивные параметры состояния, уравнение состояния. Термодинамический процесс. Температурный напор, или градиент температур. Функции процесса	
7	Первый закон термодинамики в форме Лагранжа. Закон Авогадро. Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m	
8	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс, показатель адиабаты, изотермический процесс, политропный (политропический) процесс, показатель политропы	
9	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия. Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы	ПК-2
10	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип «карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом пара	
11	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с двухступенчатым подводом тепла. Процесс регенерации в ГТУ	
12	Рабочие процессы в газотурбинных установках. Степень повышения давления в компрессоре. Понятие идеального компрессора	
13	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах сгорания и дожигания	
14	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового баланса камеры сгорания	
15	Формула для определения коэффициента избытка воздуха. Определение массы дожигаемого топлива. Коэффициент избытка воздуха после камеры дожигания	
16	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине. Степень понижения давления в турбине	ПК-2
17	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы, связанные с расширением. Понятие внутреннего (или адиабатического) КПД	

10	Unachnessay avanyuu n gynhyyyay ggygayy Dahayyy gnayaga n	
18	Преобразование энергии в турбинной ступени. Рабочий процесс в	
	турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая	
	степень реактивности	
19	Принципиальная технологическая схема и термодинамический цикл	
	простейшей ГТУ, работающей на природном газе	
20	Удельная работа турбины. Удельная работа, потребляемая компрессором	
21	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ	ПК-2
22	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент	
23	Зависимость величины полезной удельной работы простой ГТУ от степени повышения давления	
24		
24	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени повышения давления	ПК-2
25	Конструктивные особенности газотурбинных установок.	
	Основные отличия ГТУ и ПТУ, влияющие на конструкторские решения	
26	Назначение и эксплуатация стационарных и транспортных ГТУ. Основные	
	характерные особенности ГТУ. Конструктивные схемы ГТУ	
27	Конструктивная схема ГТУ с встроенной камерой сгорания. Конструктивная схема ГТУ с разрезным валом и выносной камерой сгорания. Схема консольного ротора	
28	Расчет критической частоты вращения для консольных роторов.	
20	Конструктивная схема ротора ГТУ GT 35. Конструктивная схема ГТУ-100-750 ЛМ3	
29	Турбодетандеры. Общие принципы компоновки и конструкции.	
	Газовые турбины. Ротор газовой турбины	
30	Конструктивные варианты роторов газовых турбин. Рабочие лопатки	
	турбины	
31	Геометрия елочного хвоста рабочей лопатки. Способы осевой фиксации рабочих лопаток турбины с елочным хвостом	
32	Компрессоры. Конструкция осевых компрессоров ГТУ. Лабиринтные уплотнения ГТУ	ПК-2
33	Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера	
2.4	сгорания	
34	Основные характеристики камер сгорания ГТУ:	
	- коэффициент потери давления;	
	- коэффициент полезного действия;	
	- неравномерность поля температур;	
	- теплонапряженность рабочего объема;	ПК-2
	- срывные характеристики;	
	- содержание вредных выбросов в продуктах сгорания	
35	Системы очистки и охлаждения воздуха перед компрессором, система	
	шумоглушения, антипомпажная система, устройство для промывки	ПК-2
	компрессора, система топливоподачи, маслоснабжения, электроснабжения,	
	противопожарная система	
36	Вопросы охлаждения деталей газовых турбин. Постановка задачи	
	охлаждения газовой турбины. Способы охлаждения турбинных лопаток	
37	Наружное охлаждение. Парциальный подвод охлаждающего агента по	
57	некоторому сектору проточной части турбины. Заградительное охлаждение	
38	Типы заградительного охлаждения: пленочное охлаждение, пористое	
20		пио
	охлаждение. Внутреннее охлаждение. Типы лопаток с внутренним охлаждением	ПК-2
20		
39	Термосифонное охлаждение. Схема лопаток с термосифонным	
	охлаждением. Корневое охлаждение	

59	Технические и эксплуатационные достоинства ГТУ по сравнению с ПТУ.	
58	Газотурбинная установка как двигатель тепловых электростанций. Сравнение газотурбинных установок с другими тепловыми двигателями	ПК-2
57	Автоматизированные системы управления основным и вспомогательным оборудованием (САУ). Основные функции САУ	
56	Сравнение эффективности двухвальной и одновальной ГТУ на частичных нагрузках. Управление работой газотурбинных установок	
55	Способы регулирования газотурбинных установок. Два способа регулирования мощности ГТУ: количественный, качественный	ПК-2
54	Штатный и аварийный режим остановки ГТУ	
53	Режимы пуска и остановки ГТУ. Четыре основных этапа процесса пуска одновальной ГТУ	
52	Совмещенная характеристика компрессора и турбины одновальной ГТУ. Относительные режимные характеристики одновальной ГТУ	
	построения характеристик турбины, относительная степень повышения давления, безразмерный расход воздуха.	
51	характеризующие режимы работы турбины Статические характеристики газотурбинных установок. расчетные методы	
50	отдельных процессов в них. Геометрическое подобие Динамическое подобие. Кинематическое подобие. Критерии,	
49	пусковой режим, переходные режимы. Динамические характеристики ГТУ Вопросы подобия в теории турбомашин как агрегатов в целом, так и	
48	установок. Мощности (режимы) ГТУ Режим холостого хода, режимы перегрузки. Динамические режимы ГТУ:	ПК-2
47	турбины с двухъярусными лопатками Режимы работы газотурбинных установок. Рабочие режимы газотурбинных	
46	паровой парциальности от температуры газового потока Принципиальная схема проточной части гипотетической газопаровой	
45	Степень паровой парциальности. Зависимость необходимой величины	
44	Кризис теплообмена первого рода. Газо-жидкостные теплоносители. Использования пара для охлаждения турбин	
43	Газообразные теплоносители. Теплофизические свойства теплоносителей. Жидкостные теплоносители. Критический тепловой поток	ПК-2
42	ступени Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего агента) в системах охлаждения газовых турбин	
41	Безразмерный параметр охлаждения. Сравнительная эффективность способов воздушного охлаждения лопаток. Влияние охлаждения на КПД	
40	Оценка эффективности охлаждения. Понятие безразмерной температуры лопатки. Удельный расход охладителя. Расход охлаждающего агента.	

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ	
	КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ	
	Дисциплина «Газотурбинные технологии производства электрической и	
	тепловой энергии»	
	Семестр - 4	
	Группа ТЭТ-23м	
	БИЛЕТ № 1	
1.	Сравнение эффективности двухвальной и одновальной ГТУ на частичных нагрузках. Управление работой газотурбинных установок	
2.	Динамическое подобие. Кинематическое подобие. Критерии, характеризующие	
	режимы работы турбины	
3.	Принципиальная схема проточной части гипотетической газопаровой турбины с двухъярусными лопатками	
Зая	кафедрой	
«T	«Теплотехника и гидравлика» Р.А-В. Турлуев	

Критерии оценки

- **«не зачтено» выставляется студенту, если** подготовлен некачественный реферат: тема не раскрыта, в изложении реферата отсутствует четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений.
- «зачтено» выставляется студенту, если подготовлен качественный реферат: тема хорошо раскрыта, в изложении доклада прослеживается четкая структура логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Студент свободно апеллирует терминами науки, демонстрирует авторскую позицию. Способен ответить на дополнительные вопросы по теме реферата (1-2 вопроса).

5. Контрольно- измерительный материал по учебной дисциплине

«ГАЗОТУРБИННЫЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА ЭЛЕКТРИЧЕСКОЙ И ТЕПЛОВОЙ ЭНЕРГИИ»

Направление подготовки

13.04.01 - «Теплоэнергетика и теплотехника»

Направленность (профиль)

«Теплоэнергетика и теплотехника»

Квалификация

Магистр

«Газотурбинные технологии производства электрической и тепловой энергии»

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 1
	Первый текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и
	тепловой энергии»
1	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени
	повышения давления
2	Зависимость величины полезной удельной работы простой ГТУ от степени
	повышения давления
3	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент
	Зав. кафедрой «Т и Г» Р.А-В.Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 2
	Первый текущий контроль знаний
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
2	Удельная работа турбины. Удельная работа, потребляемая компрессором
3	Принципиальная технологическая схема и термодинамический цикл простейшей
	ГТУ, работающей на природном газе
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ
	ИПСТИТУТ ЭПЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	Билет № 3
	<u>Первый текущий контроль знаний</u>
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени.
	Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
2	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы,
	связанные с расширением. Понятие внутреннего (или адиабатического) КПД
3	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине.
	Степень понижения давления в турбине
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет№4
	Первый текущий контроль знаний
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Формула для определения
	коэффициента избытка воздуха. Определение массы дожигаемого топлива.
	Коэффициент избытка воздуха после камеры дожигания
2	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового
	баланса камеры сгорания
3	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »
	Till Di Typiyeb " " "

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 5
	Первый текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
2	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ
3	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип
	«карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом
	пара
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 6
Первый текущий контроль знаний
Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>

1	Dennoù aavay ennoù evyang ennoù evyang evyang evyang avyang avyang evyang evyan
1	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия.
	Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
2	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс,
	показатель адиабаты, изотермический процесс, политропный (политропический)
	процесс, показатель политропы
3	Первый закон термодинамики в форме Лагранжа. Закон Авогадро.
	Дифференциальная форма первого закона термодинамики для выделенного элемента с
	массой т
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 7
	Первый текущий контроль знаний
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Интенсивные и экстенсивные параметры состояния, уравнение состояния. Термодинамический процесс. Температурный напор, или градиент температур.
2	Термодинамические параметры состояния и функции процесса. Феноменологический
	метод термодинамики. Статистический (или физический) метод термодинамики.
	Рабочее тело.
3	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по
	регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №8
	Первый текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Установки непрерывного и прерывистого горения. Принципиальная схема установки
	для реализации цикла Брайтона
2	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по
	регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ
3	Термодинамические параметры состояния и функции процесса. Феноменологический
	метод термодинамики. Статистический (или физический) метод термодинамики.
	Рабочее тело.
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 9		
	<u>Первый текущий контроль знаний</u>		
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>		
1	Интенсивные и экстенсивные параметры состояния, уравнение состояния. Термодинамический процесс. Температурный напор, или градиент температур.		
2	Первый закон термодинамики в форме Лагранжа. Закон Авогадро.		
	Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m		
3	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс,		
	показатель адиабаты, изотермический процесс, политропный (политропический)		
	процесс, показатель политропы		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 10		
	<u>Первый текущий контроль знаний</u>		
	Дисциплина: « Газотурбинные технологии производства электрической и		
	тепловой энергии <u>»</u>		
1	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия.		
	Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы		
2	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип		
	«карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом		
	пара		
3	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с		
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	Билет №11
	<u>Первый текущий контроль знаний</u>
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
2	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания
3	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового

баланса камеры сгорания				
Зав. кафедрой «Т и Г»	Р.А-В. Турлуев	«	>>	

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ	
	ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"	
	Билет №12	
	Первый текущий контроль знаний	
	Дисциплина: «Газотурбинные технологии производства электрической и	
	тепловой энергии <u>»</u>	
1	Формула для определения	
	коэффициента избытка воздуха. Определение массы дожигаемого топлива.	
	Коэффициент избытка воздуха после камеры дожигания	
2	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине.	
	Степень понижения давления в турбине	
3	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы,	
	связанные с расширением. Понятие внутреннего (или адиабатического) КПД	
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »	

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 13
	<u>Первый текущий контроль знаний</u>
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени.
	Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
2	Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ,
	работающей на природном газе
3	Удельная работа турбины. Удельная работа, потребляемая компрессором
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 14
Первый текущий контроль знаний
Дисциплина: «Газотурбинные технологии производства электрической и
тепловой энергии <u>»</u>

1	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ		
2	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент		
3	Зависимость величины полезной удельной работы простой ГТУ от степени		
	повышения давления		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 15
	Первый текущий контроль знаний
	Дисциплина: «Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени повышения давления
2	Зависимость величины полезной удельной работы простой ГТУ от степени повышения давления
3	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №16
	Первый текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
2	Удельная работа турбины. Удельная работа, потребляемая компрессором
3	Принципиальная технологическая схема и термодинамический цикл простейшей
	ГТУ, работающей на природном газе
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика"
Билет № 17

Первый текущий контроль знаний
Дисциплина: «Газотурбинные технологии производства электрической и

	тепловой энергии <u>»</u>	
1	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени.	
	Активная и чисто реактивная. Турбина. Кинематическая степень реактивности	
2	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы,	
	связанные с расширением. Понятие внутреннего (или адиабатического) КПД	
3	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине.	
	Степень понижения давления в турбине	
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »	

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 18
	Первый текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и
	тепловой энергии <u>»</u>
1	Формула для определения
	коэффициента избытка воздуха. Определение массы дожигаемого топлива.
	Коэффициент избытка воздуха после камеры дожигани
2	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового
	баланса камеры сгорания
3	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 19
	<u>Первый текущий контроль знаний</u>
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>
1	Рабочие процессы в газотурбинных установках. Степень повышения давления в компрессоре. Понятие идеального компрессора
2	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с двухступенчатым подводом тепла. Процесс регенерации в ГТУ
3	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип
	«карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом
	пара

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №20		
	<u>Первый текущий контроль знаний</u>		
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>		
1	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия. Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы		
2	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс, показатель адиабаты, изотермический процесс, политропный (политропический) процесс, показатель политропы		
3	Первый закон термодинамики в форме Лагранжа. Закон Авогадро.		
	Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

Зав. кафедрой «Т и Г»

5.2 Билеты ко второму текущему контролю знаний по дисциплине «Газотурбинные технологии производства электрической и тепловой энергии»

Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	Билет № 1
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>
1	Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера сгорания
2	Системы очистки и охлаждения воздуха перед компрессором, система шумоглушения,
	антипомпажная система, устройство для промывки компрессора, система
	топливоподачи, маслоснабжения, электроснабжения, противопожарная система
3	Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения газовой
	турбины. Способы охлаждения турбинных лопаток
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ
КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
Билет №2
Второй текущий контроль знаний
Дисциплина: « Газотурбинные технологии производства электрической и

	тепловой энергии <u>»</u>			
1	Наружное охлаждение. Парциальный подвод охлаждающего агента по некоторому			
	сектору проточной части турбины. Заградительное охлаждение			
2	Типы заградительного охлаждения: пленочное охлаждение, пористое охлаждение.			
	Внутреннее охлаждение. Типы лопаток с внутренним охлаждением			
3	Термосифонное охлаждение. Схема лопаток с термосифонным охлаждением.			
	Корневое охлаждение			
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »			

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №3		
	Второй текущий контроль знаний		
	Дисциплина: « Газотурбинные технологии производства электрической и		
	тепловой энергии <u>»</u>		
1	Оценка эффективности охлаждения. Понятие безразмерной температуры лопатки.		
	Удельный расход охладителя. Расход охлаждающего агента.		
2	Безразмерный параметр охлаждения. Сравнительная эффективность способов		
	воздушного охлаждения лопаток. Влияние охлаждения на КПД ступени		
3	Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего		
	агента) в системах охлаждения газовых турбин		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №4		
	Второй текущий контроль знаний		
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »		
1	Газообразные теплоносители. Теплофизические свойства теплоносителей.		
	Жидкостные теплоносители. Критический тепловой поток		
2	Кризис теплообмена первого рода. Газо-жидкостные теплоносители. Использования		
	пара для охлаждения турбин		
3	Степень паровой парциальности. Зависимость необходимой величины паровой		
	парциальности от температуры газового потока		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	Билет № 5
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »
1	Принципиальная схема проточной части гипотетической газопаровой турбины с двухъярусными лопатками
2	Режимы работы газотурбинных установок. Рабочие режимы газотурбинных установок. Мощности (режимы) ГТУ
3	Режим холостого хода, режимы перегрузки. Динамические режимы ГТУ: пусковой режим, переходные режимы. Динамические характеристики ГТУ
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 6
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »
1	Вопросы подобия в теории турбомашин как агрегатов в целом, так и отдельных процессов в них. Геометрическое подобие
2	Динамическое подобие. Кинематическое подобие. Критерии, характеризующие режимы работы турбины
3	Статические характеристики газотурбинных установок. расчетные методы построения характеристик турбины, относительная степень повышения давления, безразмерный расход воздуха.
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 7
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »
1	Совмещенная характеристика компрессора и турбины одновальной ГТУ.
	Относительные режимные характеристики одновальной ГТУ
2	Режимы пуска и остановки ГТУ. Четыре основных этапа процесса пуска одновальной
	ГТУ
3	Штатный и аварийный режим остановки ГТУ

Зав. кафедрой «Т и Г»	Р.А-В. Турлуев	«	>>	

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 8		
	Второй текущий контроль знаний		
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>		
1	Способы регулирования газотурбинных установок. Два способа регулирования мощности ГТУ: количественный, качественный		
2	Сравнение эффективности двухвальной и одновальной ГТУ на частичных нагрузках.		
	Управление работой газотурбинных установок		
3	Режимы пуска и остановки ГТУ. Четыре основных этапа процесса пуска одновальной ГТУ		
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »		

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет №9
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »
1	Совмещенная характеристика компрессора и турбины одновальной ГТУ. Относительные режимные характеристики одновальной ГТУ
2	Статические характеристики газотурбинных установок. расчетные методы построения характеристик турбины, относительная степень повышения давления, безразмерный расход воздуха.
3	Динамическое подобие. Кинематическое подобие. Критерии, характеризующие режимы работы турбины
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

	грозненский государственный нефтяной технический университет институт энергетики кафедра "теплотехника и гидравлика" Билет № 10
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>
1	Вопросы подобия в теории турбомашин как агрегатов в целом, так и отдельных

	процессов в них. Геометрическое подобие
2	Режим холостого хода, режимы перегрузки. Динамические режимы ГТУ: пусковой
	режим, переходные режимы. Динамические характеристики ГТУ
3	Режимы работы газотурбинных установок. Рабочие режимы газотурбинных
	установок. Мощности (режимы) ГТУ
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ

Второй текущий контроль знаний

Дисциплина: «Газотурбинные технологии производства электрической и тепловой энергии»

Принципиальная схема проточной части гипотетической газопаровой турбины с двухъярусными лопатками

Степень паровой парциальности. Зависимость необходимой величины паровой парциальности от температуры газового потока

Кризис теплообмена первого рода. Газо-жидкостные теплоносители. Использования пара для охлаждения турбин

Зав. кафедрой «Т и Г»

Р.А-В. Турлуев « »

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 12
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>
1	Газообразные теплоносители. Теплофизические свойства теплоносителей. Жидкостные теплоносители. Критический тепловой поток
2	Выбор теплоносителя для системы охлаждения. Роль теплоносителя (охлаждающего агента) в системах охлаждения газовых турбин
3	Безразмерный параметр охлаждения. Сравнительная эффективность способов воздушного охлаждения лопаток. Влияние охлаждения на КПД ступени
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ

КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"

	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии <u>»</u>
1	Оценка эффективности охлаждения. Понятие безразмерной температуры лопатки.
	Удельный расход охладителя. Расход охлаждающего агента.
2	Термосифонное охлаждение. Схема лопаток с термосифонным охлаждением.
	Корневое охлаждение
3	Типы заградительного охлаждения: пленочное охлаждение, пористое охлаждение.
	Внутреннее охлаждение. Типы лопаток с внутренним охлаждением
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 14 Второй текущий контроль знаний Дисциплина: «Газотурбинные технологии производства электрической и тепловой энергии<u>»</u> Наружное охлаждение. Парциальный подвод охлаждающего агента по некоторому сектору проточной части турбины. Заградительное охлаждение 2 Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения газовой турбины. Способы охлаждения турбинных лопаток Системы очистки и охлаждения воздуха перед компрессором, система шумоглушения, антипомпажная система, устройство для промывки компрессора, система топливоподачи, маслоснабжения, электроснабжения, противопожарная система Зав. кафедрой «Т и Г» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ЭНЕРГЕТИКИ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" Билет № 15
	Второй текущий контроль знаний
	Дисциплина: « Газотурбинные технологии производства электрической и тепловой энергии »
1	Камера сгорания ГТУ. Первичный и вторичный, воздух. Секционная камера сгорания
2	Системы очистки и охлаждения воздуха перед компрессором, система шумоглушения,
	антипомпажная система, устройство для промывки компрессора, система
	топливоподачи, маслоснабжения, электроснабжения, противопожарная система
3	Вопросы охлаждения деталей газовых турбин. Постановка задачи охлаждения газовой
	турбины. Способы охлаждения турбинных лопаток
	Зав. кафедрой «Т и Г» Р.А-В. Турлуев « »

Билеты к экзамену по дисциплине «Газотурбинные технологии производства электрической и тепловой энергии»

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 1
1.	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип «карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом пара
2.	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия.
	Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
3.	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс,
	показатель адиабаты, изотермический процесс, политропный (политропический)
	процесс, показатель политропы
Зав	. кафедрой
«Τ	еплотехника и гидравлика» P.A-B. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
	КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 3
_	
1.	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания
2.	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
3.	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ
	друметунен штрым подродом тенми, тродеес регенерации в т ту
Зав. кафедрой	
	еплотехника и гидравлика» Р.А-В. Турлуев
	1 л г. туриусь 19 г.
۷٠.	1.71.

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	институт энергетики Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии» Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 4
1.	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине. Степень понижения давления в турбине
2.	Формула для определения коэффициента избытка воздуха. Определение массы дожигаемого топлива. Коэффициент избытка воздуха после камеры дожигания
3.	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового баланса камеры сгорания
	 в. кафедрой еплотехника и гидравлика» Р.А-В. Турлуев
	141 В. Турмусь 19 г.

	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 5
1.	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
2.	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
3.	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы, связанные с расширением. Понятие внутреннего (или адиабатического) КПД
3.	Активная и чисто реактивная. Турбина. Кинематическая степень реактивно Идеальная работа расширения в турбине. Работа реальной турбины. Потери связанные с расширением. Понятие внутреннего (или адиабатического) КП
	редрой

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 6
1.	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени.
	Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
2.	Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ, работающей на природном газе
3.	Удельная работа турбины. Удельная работа, потребляемая компрессором
3aı	. кафедрой
1	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 7
1.	Зависимость величины полезной удельной работы простой ГТУ от степени
	повышения давления
	••
2.	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени
	повышения давления
3.	Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ,
	работающей на природном газе
Зав	з. кафедрой
«T	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 8
1.	Удельная работа турбины. Удельная работа, потребляемая компрессором
2.	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
3.	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент
3aı	з. кафедрой
«Т	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 9
1.	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы, связанные с расширением. Понятие внутреннего (или адиабатического) КПД
2.	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
3.	Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ, работающей на природном газе
	1 0
	з. кафедрой
«T	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
	КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА"
	ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 10
1.	Схема материальных потоков и параметров камеры сгорания. Уравнение теплового
1.	баланса камеры сгорания
	оаланса камеры сторания
2.	Формула для определения
۷٠	
	коэффициента избытка воздуха. Определение массы дожигаемого топлива.
	Коэффициент избытка воздуха после камеры дожигания
<u> </u>	They are negrous as well as the first the firs
3.	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине.
	Степень понижения давления в турбине
2-	1 <u>Y</u>
	з. кафедрой
«Τ	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ №11
1.	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ
2.	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
3.	Промежуточное охлаждение. Процесс сжатия в компрессоре. Процессы в камерах
	сгорания и дожигания
3aı	з. кафедрой
	еплотехника и гидравлика» Р.А-В. Турлуев

	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 12
1.	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс, показатель адиабаты, изотермический процесс, политропный (политропический) процесс, показатель политропы
2.	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия. Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
3.	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип «карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом пара
3aı	з. кафедрой
«T	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 13
1.	Термодинамические параметры состояния и функции процесса. Феноменологический метод термодинамики. Статистический (или физический) метод термодинамики. Рабочее тело
2.	Интенсивные и экстенсивные параметры состояния, уравнение состояния. Термодинамический процесс. Температурный напор, или градиент температур. Функции процесса
3.	Первый закон термодинамики в форме Лагранжа. Закон Авогадро. Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m
	 в. кафедрой еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Цисциплина «Газотурбинные технологии производства электрической и тепловой энергии»
\dashv	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 14
1.	Интенсивные и экстенсивные параметры состояния, уравнение состояния. Гермодинамический процесс. Температурный напор, или градиент температур. Функции процесса
2.	Гермодинамические параметры состояния и функции процесса. Феноменологический иетод термодинамики. Статистический (или физический) метод термодинамики. Рабочее тело
3.	Регенеративный цикл Брайтона. Принципиальная схема ГТУ, работающей по регенеративному циклу Брайтона. Замкнутые и разомкнутые схемы работы ГТУ
Зав	кафедрой
«Τε	лотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 15
1.	Второй закон термодинамики, термодинамический цикл. Энтальпия. Энтропия. Интеграл Клаузиуса. Диаграммы состояния и термодинамические циклы
2.	Изохорный процесс, изобарный процесс, адиабатический (адиабатный) процесс, показатель адиабаты, изотермический процесс, политропный (политропический) процесс, показатель политропы
3.	Первый закон термодинамики в форме Лагранжа. Закон Авогадро. Дифференциальная форма первого закона термодинамики для выделенного элемента с массой m
Зав	в. кафедрой
	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 16
1.	Рабочие процессы в газотурбинных установках. Степень повышения давления в
	компрессоре. Понятие идеального компрессора
2.	Термодинамическое совершенствование цикла Брайтона. Цикл ГТУ с
	двухступенчатым подводом тепла. Процесс регенерации в ГТУ
3.	Цикл Карно и карнотизированный цикл Брайтона. КПД цикла Карно. Принцип
	«карнотизации». Диаграммы p–v, T–s и h–s. Цикл Ренкина с двойным перегревом
	пара
Зав	з. кафедрой
«Τ	еплотехника и гидравлика» Р.А-В. Турлуев

	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 17
1.	Формула для определения коэффициента избытка воздуха. Определение массы дожигаемого топлива. Коэффициент избытка воздуха после камеры дожигания
2.	коэффициента избытка воздуха. Определение массы дожигаемого топлива.

	Дисциплина «Газотурбинные технологии производства электрической и тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 18
1.	Преобразование энергии в турбинной ступени. Рабочий процесс в турбинной ступени. Активная и чисто реактивная. Турбина. Кинематическая степень реактивности
	The second of th
2.	Идеальная работа расширения в турбине. Работа реальной турбины. Потери работы, связанные с расширением. Понятие внутреннего (или адиабатического) КПД
3.	Процесс расширения в турбине. Идеальный и реальный процессы сжатия в турбине. Степень понижения давления в турбине
1	з. кафедрой
«T	еплотехника и гидравлика» Р.А-В. Турлуев

	ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ
	Дисциплина «Газотурбинные технологии производства электрической и
	тепловой энергии»
	Семестр - 4
	Группа ТЭТ-23м
	БИЛЕТ № 19
1.	Удельная полезная работа ГТУ. Внутренний КПД ГТУ. Внутренняя мощность ГТУ
2.	Удельная работа турбины. Удельная работа, потребляемая компрессором
3.	Принципиальная технологическая схема и термодинамический цикл простейшей ГТУ,
	работающей на природном газе
Заг	з. кафедрой
	еплотехника и гидравлика» Р.А-В. Турлуев

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА "ТЕПЛОТЕХНИКА И ГИДРАВЛИКА" ИНСТИТУТ ЭНЕРГЕТИКИ		
Дисциплина «Газотурбинные технологии производства электрической и тепловой энергии»		
_	Сем	естр - 4
Группа ТЭ	Г-23м	

	БИЛЕТ № 20			
1.	Эффективный КПД ГТУ. Электрический КПД. Температурный коэффициент			
2.	Зависимость величины полезной удельной работы простой ГТУ от степени			
	повышения давления			
3.	Зависимость внутреннего КПД простой ГТУ от начальной температуры газа и степени			
	повышения давления			
Зая	Зав. кафедрой			
«T	«Теплотехника и гидравлика» Р.А-В. Турлуев			