Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Минти Строство науки и высшего образования российской федерации Должность: Ректор

Дата подписания: 27.10.2023.11.56.25 Уникальный программный ключ: УЧРЕЖЛЕНИЕ ВЫСШЕГО ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖЛЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865aa5259fd4854CUIEГО ОБРАЗОВАНИЯ «ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА М.Д.МИЛЛИОНЩИКОВА»

Прикладная механика и инженерная графика

УТВЕРЖДЕН

на заседании кафедры «22» июня 2023г., протокол №11

Заведующий кафедрой

М.А. Саидов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«Сопротивление материалов»

Направление подготовки

08.03.01 Строительство

Профиль

«Производство строительных материалов, изделий и конструкций»

Квалификация

Бакалавр

Составитель М.А. Саидов

ПАСПОРТ

ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

<u>Сопротивление материалов</u> (наименование дисциплины)

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Введение. Растяжение и сжатие.		Решение задач
2	Сложные случаи растяжения и сжатия		TECT
3	Изгиб. Проверка прочности балок	OHE 1	TECT
4	Потенциальная энергия деформации.	ОПК-1	TECT
5	Статически неопределимые балки.		
6	Сложное сопротивление		TECT

ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства
1	Тестовые задания	Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде тестов	в фонде Тесты по разделам дисциплины
2	Решение задач	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу учебной дисциплины.	Комплект контрольных заданий по вариантам

ВОПРОСЫ ДЛЯ ТЕСТОВЫХ ЗАДАНИЙ

Тема 1. Растяжение и сжатие.

- 1. Напряжения и деформации при растяжении и сжатии в пределах упругости.
- 2. Экспериментальное изучение растяжения и сжатия различных материалов и основы выбора допускаемых напряжений.

Тема 2. Сложные случаи растяжения и сжатия

- 1. Расчет статически неопределимых систем по допускаемым напряжениям.
- 2.Учет собственного веса при растяжении и сжатии.

Тема 3. Изгиб. Проверка прочности балок.

1. Проверка прочности материала при сложном напряжении.

- 2. Внутренние силовые факторы при изгибе.
- 3. Эпюры поперечных сил и изгибающих моментов.
- 4. Вычисление нормальных напряжений при изгибе и проверка прочности балок.

Тема 4. Потенциальная энергия.

1. Применение понятия о потенциальной энергии к определению перемещений.

Тема 5. Статически неопределимые балки.

1. Интеграл Мора. Метод сил.

Тема 5. Сложное сопротивление

- 1.Косой изгиб.
- 2. Совместное действие кручения и изгиба.
- 3. Общий случай сложного сопротивления.
- 4. Расчет по допускаемым нагрузкам.
- 5. Понятие о расчете по предельным нагрузкам.

КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ ТЕСТОВОЕ ЗАДАНИЕ № 1

$\mathcal{N}_{\underline{0}}$	вопрос	вариант ответ	a
	Что не изучает наука о сопротивлении материалов?	прочность	1
1		твердость	2
1		жесткость	3
		устойчивость	4
	Сколько внутренних силовых факторов определяют	2	1
2	с помощью метода сечений?	4	2
2		5	3
		6	4
	В каких единицах измеряется модуль упругости	[МПа]	1
3	материалов E (модуль Юнга)?	[кН]	2
3		[кНм]	3
		[кН/м]	4
	Как обозначают допускаемые нормальные	[τ]	1
4	напряжения?	[σ]	2
•		<u>[ρ]</u>	3
		[μ]	4
	Чему равно максимальное касательное напряжения	σ/2	1
5	при осевом растяжении (сжатии)?	σ	2
		2σ	3
		0	4
	Какой вид деформации испытывает вал?	кручение	1
6		изгиб	2
•		растяжение	3
		сжатие	4
7	Как выражается жесткость вала?	EJ_p	1
, 		EF	2

		GF	3
		GJ_p	4
	Какой вид имеет закон Гука при кручении?	$M = \varphi J_{\rho}/Gl$	1
8		$\varphi = GM/J_{\rho}l$	2
		$G = MJ_{\rho}/\varphi l$	3
		$\varphi = Ml/GJ_{\rho}$	4
	Какой вид деформации испытывает балка?	растяжение (сжатие)	1
9		сдвиг	2
		кручение	3
		изгиб	4
	Чему равна производная поперечной силы Q по	q M	1
10	абсциссе сечения при изгибе?	<u>Μ</u> σ	3
		τ	4
	По какой формуле определяются нормальные	$\sigma = Jz/M$	1
	напряжения при чистом изгибе?	$\sigma = J/Mz$	2
11		$\sigma = Mz/J$	3
		$\sigma = MJ/z$	4
	Как выражается потенциальная энергия деформации	U = Ml/2EJ	1
	при чистом изгибе балки, если изгибающий момент	$U = M^2 l/EJ$	2
12	и жесткость постоянны по длине?	U = Ml/EJ	3
		$U = M^2 l / 2EJ$	4
	Каким ученым впервые была выведена формула:	Л. Эйлер	1
	$\tau = \frac{QS_y}{I_0h}$	Ф. Ясинский	2
13	$\tau = \frac{1}{J_{\nu}b}$	Д. Журавский	3
	,	Г. Мор	4
	Какое уравнение называется приближенным	$EJ \cdot y = M(x)$	1
	дифференциальным уравнением изогнутой оси	$EF \cdot y = M(x)$	2
14	балки?	$EJ \cdot y = N(x)$	3
		$FJ \cdot y = M(x)$	4
	Чему равен прогиб балки длиной l , жестко	$f = -Pl^2/3EJ$	1
	защемленной на одном конце и нагруженной на	$f = -Pl^3/2EJ$	2
15	другой силой P ?	$f = -Pl^2/2EJ$	3
		$f = -Pl^3/3EJ$	4
	Каким ученым введен в практику расчета	Л. Эйлер	1
	следующий интеграл:	Ф. Ясинский	2
16	ι Γ ΜΜ°	Д. Журавский	3
	$\delta = \int_{0}^{\infty} \frac{MM^{o}}{EJ} dx$	Г. Мор	4
	В каком случае косой изгиб вырождается в плоский,	$\varphi > \alpha$	1
17	если угол наклона плоскости действия сил ф, а угол	$\varphi < \alpha$	2
	наклона нейтральной линии α?	arphi=lpha	3

		$\varphi = 1/\alpha$	4
18	Определить величину угла наклона нейтральной линии α при косом изгибе, если угол наклона плоскости действия сил $\phi = 36^{\circ}$, а отношение моментов инерции равно 8 ?	80° 70° 60° 50°	1 2 3 4
19	Какой формулой определяется величина критических напряжений для сжатого стержня?	$\sigma_{\kappa} = 2\pi E / \lambda^{2}$ $\sigma_{\kappa} = \pi E / \lambda^{2}$ $\sigma_{\kappa} = \pi^{2} E / \lambda^{2}$ $\sigma_{\kappa} = \pi^{2} E / \lambda$	1 2 3 4
20	Как выглядит условие применимости формулы Эйлера для сжатых стержней?	λ_{Π} $\geq \sqrt{\sigma_{\Pi}/\pi^{2}E}$ $\lambda_{\Pi} \geq \sqrt{\sigma_{\Pi}^{2}/\pi E}$ λ_{Π} $\geq \sqrt{\pi^{2}E/\sigma_{\Pi}}$ λ_{Π} $\geq \sqrt{\sigma_{\Pi}/\pi^{2}E}$	1 2 3

ТЕСТОВОЕ ЗАДАНИЕ № 2

$N_{\underline{0}}$	вопрос	вариант ответа	
	Как называются деформации, которые исчезают	остаточные	1
	после удаления вызвавших их сил, - тело	упругие	2
1	полностью восстанавливает свою прежнюю	пластические	3
	форму?	критические	4
	Как называется внутренняя сила взаимодействия	напряжение	1
2	между атомами, приходящаяся на единицу	деформация	2
2	площади, выделенную в какой-либо точке	перемещение	3
	поперечного сечения тела?	сопротивление	4
	Как выразить основное требование, которому должны удовлетворять материал и размеры	$ \rho_{max} \ge [\rho] $	1
3	элемента?	$ \rho_{max} \ge 1 / [\rho] $	2
		$\rho_{max} \le 1 / [\rho]$	3
		$ \rho_{max} \le [\rho] $	4
	Чему равен модуль упругости материала в МПа,	$1,6\cdot10^5$	1
4	если при величине нормальных напряжений	$0.7 \cdot 10^5$	2
T	69МПа относительная продольная деформация	$2,1\cdot10^5$	3
	составляет 1мм?	$0.8 \cdot 10^5$	4
	Каково значение коэффициента Пуассона для	0,2	1
5	материалов, у которых при деформации почти не	0,3	2
	происходит изменения объема?	0,4	3
		0,5	4
	При каком напряженном состоянии материала	линейное	1
	максимальные касательные напряжения	плоское	2
6	определяются следующей формулой?	объемное	3
	$max\tau = \frac{\sigma_1^2 - \sigma_2^2}{2}$	осевое	4
7	Какому виду деформации соответствует	растяжение	1
,	следующая запись закона Гука?	сдвиг	2

	$ au = G \gamma$	кручение	3
	,	изгиб	4
	Подберите необходимый диаметр вала в [см],	40	1
8	если необходимый полярный момент	36	2
0	сопротивления сечения равен 8·10 ⁻⁴ м ³ ?	26	3
		16	4
	Как выражается потенциальная энергия	$U = Ml/2GJ_{\rho}$	1
9	деформации вала, если крутящий момент и	$U = M^2 l/G J_{\rho}$ $U = M l/G J_{\rho}$	2
	жесткость постоянны по длине?	$U = Ml/GJ_{\rho}$	3
		$U = M^2 l / 2GJ_{\rho}$	4
	Чему равна вторая производная от изгибающего	q	1
10	момента по абсциссе сечения при изгибе	Q	2
10	стержня?	N	3
		Р	4
	В точке 1 поперечного сечения балки А-А	σ	1
11	действуют M A I M M 1• M	τ	2
		0	3
	ΑΙ	σ, τ	4
	В каком случае на некотором участке балки	Q=0	1
12	изгибающий момент возрастает?	Q<0	2
		Q>0	3
	Как называют перемещения центра тяжести	поворотом	1
13	сечения по направлению перпендикулярному к	сечения	
	оси балки при плоском изгибе?	прогибом	2
	Variana naturuwa unatusa sa ten na universa	сечения <i>f</i> — DI3 /12 EI	1
	Какова величина прогиба балки на двух опорах,	$f = -Pl^3/12EJ$	1
Ĭ	симметрицио загруженной силои/	£ _ D13 /24E1	\sim
14	симметрично загруженной силой?	$f = -Pl^3/24EJ$	2
14	симметрично загруженной силой?	$f = -Pl^3/36EJ$	3
14		$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$	3
14	Сколько раз статически неопределима система,	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1	3 4 1
14	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2	3 4 1 2
	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3	3 4 1 2 3
	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11} x + \Delta_P = 0$	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3 4	3 4 1 2 3 4
	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной	$f = -Pl^{3}/36EJ$ $f = -Pl^{3}/48EJ$ 1 2 3 4 $\tan \alpha = y_{o} - z_{0} $	3 4 1 2 3 4 1
15	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_0 , y_0 – точки	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3 4	3 4 1 2 3 4 1 2
	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной	$f = -Pl^{3}/36EJ$ $f = -Pl^{3}/48EJ$ 1 2 3 4 $\tan \alpha = y_{o} - z_{0} $	3 4 1 2 3 4 1
15	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_0 , y_0 – точки	$f = -Pl^{3}/36EJ$ $f = -Pl^{3}/48EJ$ 1 2 3 4 $\tan \alpha = y_{o} - z_{0} $ $\tan \alpha = z_{o}y_{o} $	3 4 1 2 3 4 1 2
15	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_0 , y_0 – точки	$f = -Pl^{3}/36EJ$ $f = -Pl^{3}/48EJ$ 1 2 3 4 $\tan \alpha = y_{o} - z_{0} $ $\tan \alpha = z_{o}y_{o} $ $\tan \alpha = z_{o}/y_{o} $	3 4 1 2 3 4 1 2 3
15 16	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_o , y_o – точки принадлежащие нейтральной линии)?	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3 4 $\tan \alpha = y_o - z_0 $ $\tan \alpha = z_o y_o $ $\tan \alpha = z_o / y_o $ $\tan \alpha = y_o + z_0 $	3 4 1 2 3 4 1 2 3 4
15	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_o , y_o – точки принадлежащие нейтральной линии)? Чему равен угол наклона нейтральной линии при косом изгибе, если отношение прогибов в главных плоскостях инерции равно 0,5, а угол	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3 4 $\tan \alpha = y_o - z_0 $ $\tan \alpha = z_o y_o $ $\tan \alpha = z_o / y_o $ $\tan \alpha = y_o + z_0 $ 26^o	3 4 1 2 3 4 1 2 3 4 1 2
15 16	Сколько раз статически неопределима система, если каноническое уравнение метода сил для нее имеет вид $\delta_{11}x + \Delta_P = 0$ Как выразить тангенс угла наклона нейтральной линии α при косом изгибе (z_0 , y_0 — точки принадлежащие нейтральной линии)? Чему равен угол наклона нейтральной линии при косом изгибе, если отношение прогибов в	$f = -Pl^3/36EJ$ $f = -Pl^3/48EJ$ 1 2 3 4 $\tan \alpha = y_o - z_0 $ $\tan \alpha = z_o y_o $ $\tan \alpha = z_o / y_o $ $\tan \alpha = y_o + z_0 $ 26^o 36^o	3 4 1 2 3 4 1 2 3 4

			_
	Как выражается расчетный момент по теории потенциальной энергии формоизменения при совместном действии изгиба и кручения?	$M_p = \frac{1}{2} \left[M_k + \sqrt{M_{\text{\tiny H}}^2 + M_k^2} \right]$	1
18		M_p = 0,35 M_k + 0,65 $\sqrt{M_H^2 + M_k^2}$	2
		$M_p = \sqrt{M_{\scriptscriptstyle \rm H}^2 + M_k^2}$	3
	Как называется некоторая область вокруг центра	ядро сечения	1
19	тяжести сечения, внутри которой можно располагать точку приложения силы <i>P</i> , не вызывая в сечении напряжений разного знака?	центр сечения	2
1)		площадь сечения	3
	вызывая в сечении напряжении разного знака:	радиус сечения	4
	Каким выражением определяется динамический коэффициент при ударе?	$K_{\mu} = 1$ $-\sqrt{1 + 2H/\delta_c}$	1
20		$K_{\mu} = 1$ $-\sqrt{1 - 2H/\delta_c}$	2
20		$K_{\mu} = 1 + \sqrt{1 + 2H/\delta_c}$	3
		$K_{\mu} = 1 + \sqrt{1 - 2H/\delta_c}$	4

ТЕСТОВОЕ ЗАДАНИЕ № 3

$\mathcal{N}_{\underline{\circ}}$	вопрос	вариант ответа	
	Материал, у которого механические свойства	однородным	1
1	во всех точках одинаковы, называется	упругим	2
1		изотропным	3
		хрупким	4
	Как называют деформацию стержня,	растяжение(сжатие)	1
	вызванную действием двух равных и прямо	сдвиг	2
2	противоположных сил, приложенных к	кручение	3
	концевым сечениям и направленных по оси стержня?	изгиб	4
	Нормативное значение напряжения для	$\sigma_{ m nu}$	1
	пластичных материалов равно	$\sigma_{_{ m T}}$	2
3		$\sigma_{ m y}$	3
		$\sigma_{ ext{ iny Bp}}$	4
4		осевой	1

	Как называют момент инерции, обозначенный интегралом	полярный	2
	$J_{ ho}=\int\limits_{F} ho^{2}dF$	центробежный	3
	Какой момент инерции является	J_x	1
5	максимальным для данного профиля?	J_{y}	2
		$J_{ ho}$	3
	Балка из хрупкого материала имеет	$_{a}W_{z} = a^{3}/3$	1
	прямоугольное поперечное сечение	$aW_z = a^3/3$ $2a^3/3$	2
6	сечения относительно оси Z?	$=\frac{y_2}{\alpha^2}/3$	3
	↓	2 a 3 / 4	4
	Vara and an analysis of the control	, 2	
_	Угол поворота концевого сечения C вала равен	ML/GJ_p $ML/2GJ_p$	2
7	F-2-17	$ML/3GJ_p$	
		r	3
	Если при кручении стержня круглого сечения	увеличится в 8 раз	1
	его диаметр увеличить в 2 раза, то максимальное касательное напряжение	уменьшится в 16 раз	2
8		уменьшится в 4	
		раза	3
		уменьшится в 8 раз	4
	При допускаемом касательном напряжении [т] полярный момент	$W_{\rho} \ge M/3[\tau]$	1
9	полярный момент сопротивления W_{ρ} удовлетворяет условию	$W_{\rho} \ge 4M/[\tau]$	2
		$W_{\rho} \ge 2M/[\tau]$	3
	При кручении стержня круглого сечения его	увеличивается	1
10	диаметр	уменьшается	2
		не изменяется	3
№	вопрос	вариант ответа	
	Стержень круглого поперечного сечения радиусом R загружен по торцам крутящим	$\frac{2M_k/\pi R^3}{M_k/2-R^2}$	1
1.1	моментом М. Найдите модуль касательного	$\frac{M_k/2\pi R^2}{M_k/\pi R^3}$ $\frac{M_k/2\pi R^3}{M_k/2\pi R^3}$	3
11	напряжения в точке А поперечного сечения	$M_k/\pi\kappa$ $M_*/2\pi R^3$	3
	находящейся на расстоянии 0,5R от центра сечения.	$m_k/2\pi K$	4
	Для какого угла наклона плоскости ф	30°	1
	касательное напряжение т будет наибольшим?	45°	2
12	наиоольшим:	60^{o}	3
	P	90°	4
12	Чему равны нормальные	$\sigma = F/4A$	1
13		$\sigma = F/2A$	2

	A	$\sigma = 3F/4A$	3
	напряжения в сечении I-I?	$\sigma = 3F/2A$	4
	В точке 1 поперечного сечения балки А-А	σ	1
	_	τ	2
14	действуют М А 1	0	3
	AI	σ, τ	4
	Величина Х ₁ в каноническом уравнении	нагрузку	1
1.5	метода сил	перемещение	2
15	$\delta_{11} \cdot X_1 + \Delta_{1p} = 0$	реакцию	3
	определяет	направление	4
	Стержень круглого поперечного сечения	R/2	1
	(радиус - R) испытывает внецентренное	R/3	2
16	сжатие. Радиус ядра сечения будет равен	R/4	3
		R/5	4
17	Уравнение нейтральной линии при внецентренном растяжении-сжатии имеет вид (<i>P</i> – точка приложения силы)	$1 = \frac{y_p y}{i_z^2} + \frac{z_p z}{i_y^2}$ $1 + \frac{y_p y}{i_z} + \frac{z_p z}{i_y} = 0$	1 2
18	При расчете сжатых стержней из хрупкого материала на устойчивость получаемые критические напряжения	t_Z t_y всегда меньше $\sigma_{\text{вр}}$ всегда меньше $\sigma_{\text{пц}}$ всегда больше $\sigma_{\text{пц}}$	1 2 3
		всегда облыне опц	4
	Формула Ясинского для определения	$\sigma_{\rm kp} = a + b \cdot \lambda^2$	1
	критических напряжений имеет вид	$\sigma_{\rm kp} = (a-b) \cdot \lambda$	2
19		$\sigma_{\rm kn} = a - b \cdot \lambda$	3
		$\sigma_{\rm kp} = a - b \cdot \lambda$ $\sigma_{\rm kp} = a - b \cdot \lambda^2$	4
	Стальной стержень диаметром 30мм	69,4	1
20	растянут внезапно приложенной постоянной	70,2	2
20	силой 30кН. Определить наибольшее	84,9	3
	напряжение в МПа.	90,1	4

ТЕСТОВОЕ ЗАДАНИЕ № 4

	№	вопрос	вариант ответа	
		Как называются деформации, которые не исчезают	остаточные	1
	1	после удаления вызвавших их сил, - тело не	упругие	2
		полностью восстанавливает свою прежнюю форму?	критические	3
		Как называется изменение размеров и формы	напряжение	1
	2	элементов конструкций, так и конструкции в целом,	деформация	2
		под воздействием внешних сил?	перемещение	3
	3		$ \rho_{max} \ge [\rho] $	1

	Как выразить основное требование, которому должны удовлетворять материал и размеры элемента?		$ \rho_{max} \ge 1 / [\rho] $	
			$ \rho_{max} \le 1 / [\rho] $	3
			$ \rho_{max} \le [\rho] $	4
	Определите величину нормальных напряжений н	3	123,5МПа	1
4	стальном стержне ($E=2\cdot10^5 M\Pi a$), если		180MΠa	2
	относительная продольная деформация составила 1,235мм.		247MΠa	3
			87MΠa	4
	Каково значение коэффициента Пуассона для		0,2	1
5	материалов, у которых при деформации почти не происходит изменения объема?	3	0,3 0,4	3
	происходит изменения оовема:		0,5	4
	При каком напряженном состоянии материала		линейное	1
	максимальные касательные напряжения		плоское	2
6	определяются следующей формулой?	объемное	3	
	$max\tau = \frac{\sigma}{\pi}$		осевое	4
	2			4
	Каким выражением, согласно закону Гука,		$\gamma = \tau G$	1
7	определяется относительный угол сдвига?		$\gamma = G/\tau$	3
			$\gamma = \tau/G$	4
	Подберите необходимый диаметр вала в [см], есл		19	<u>1</u>
8	необходимый полярный момент сопротивления сечения равен $12 \cdot 10^{-4} \text{m}^3$?		25	2
o			30	3
			34	4
	Как выражается потенциальная энергия		U = Ml/2EJ	1
9	деформации балки, если изгибающий момент и	$U = M^2 l / E J$	2	
	жесткость постоянны по длине?		U = Ml/EJ	3
			$U = M^2 l / 2EJ$	<u>4</u>
	Чему равна производная от изгибающего момента по абсциссе сечения при изгибе стержня?		q	1
10			$\frac{Q}{N}$	<u> 4</u>
			N P	3
			-	1
11	В точке 1 поперечного сечения балки A-A действуют м > A м		σ	
	действуют M А I М М М М М М М М М М М М М М М М М М		τ	
			0	
	A		σ, τ	4
10	В каком случае на некотором участке балки изгибающий момент убывает?		Q=0	1
12	изгиоающии момент уоывает?		Q<0	<u>2</u> 3
	TC.		Q>0	3
10	Как называют перемещения центра тяжести	ПС	воротом сечения	1
13	сечения по направлению перпендикулярному к оси балки при плоском изгибе?	П	рогибом сечения	2
14	Какова величина максимального прогиба балки	$f_{max} = -7ql^4/364EJ$		1
	длиной L, свободно лежащей на двух опорах и загруженной равномерно распределенной нагрузкой q?		$f_{max} = -5ql^4/384EJ$	
			$f_{max} = -8ql^4/284EJ$	
			$f_{max} = -2ql^4/172EJ$	
15		71110	1	1
13				1

	Сколько раз статически неопределима система,	2	
	если каноническое уравнение метода сил для	3	3
	нее имеет вид $\delta_{11}x + \Delta_P = 0$	4	4
	Как выразить тангенс угла наклона	$\tan \alpha = y_0 - z_0 $	1
16	нейтральной линии α при косом изгибе (z_0 , y_0 –	$\tan \alpha = z_o y_o $	2
	точки принадлежащие нейтральной линии)?	$\tan \alpha = z_o/y_o $	3
		$\tan \alpha = y_o + z_0 $	4
17	Чему равен угол наклона нейтральной линии	28°	1
	при косом изгибе, если отношение прогибов в	38°	<u>2</u>
	главных плоскостях инерции равно 0,8?	48°	3
		18°	4
18	Как выражается расчетный момент по теории наибольших нормальных напряжений при совместном действии изгиба и кручения?	$M_p = \frac{1}{2} \left[M_k + \sqrt{M_{\text{\tiny H}}^2 + M_k^2} \right]$	1
		$M_p = \sqrt{M_{\scriptscriptstyle \rm H}^2 + M_k^2}$	2
		$M_p = \sqrt{M_{\rm H}^2 + 0.75 M_k^2}$	4
	Определить величину нормального	54,23МПа	1
19	напряжения возникающего в стальном тросе	81,16МПа	2
	диаметром 20мм, на котором поднимают груз весом 20кH, с ускорением 1,5м/с ² ?	73,44МПа	<u>3</u>
	• •	112,43МПа	4
20	Каким выражением определяется динамический коэффициент при ударе?	K_{μ} $= 1 + \sqrt{1 + V^2/g\delta_c}$ $K_{\mu} = 1 - \sqrt{1 - 2H/\delta_c}$	1
		$K_{\rm A}=1-\sqrt{1-2H/\delta_c}$	2
		I K	3
		$K_{A} = 1 + \sqrt{1 - V^2/g\delta_c}$ $K_{A} = 1 + \sqrt{1 - 2H/\delta_c}$	4

Критерии оценки знаний студентов при проведении тестирования

Оценка «отлично» выставляется при условии правильного ответа студента не менее чем 85% тестовых заданий;

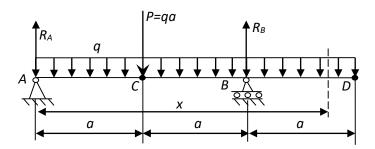
Оценка «хорошо» выставляется при условии правильного ответа студента не менее чем 70% тестовых заданий;

Оценка «удовлетворительно» выставляется при условии правильного ответа студента не менее - 51%; .

Оценка «**неудовлетворительно** выставляется при условии правильного ответа студента менее чем на 50% тестовых заданий.

Примеры задач

1. Груз подвешен к стальной проволоке, размеры которой до деформации были следующими: L=3 м и d=1,6 мм. Удлинение проволоки оказалось равным 1,5 мм. Затем тот же груз был подвешен к медной проволоке длиной L_1 =1,8 м и диаметром d_1 =3,2 мм. Ее удлинение получилось равным 0,39 мм. Определить модуль упругости медной проволоки, если модуль упругости стальной – E=2·10⁶ кг/см².


Ответ: $1,15 \cdot 10^6 \text{ кг/см}^2$.

2.Полное напряжение по одной из площадок, проведенных через выбранную точку элемента конструкции, равно 300кг/см². Оно наклонено к этой площадке под углом 60°. По площадке, перпендикулярной к первой, действуют лишь касательные напряжения. Найти наибольшее растягивающее напряжение в этой точке.

Ответ: 328 кг/см^2 .

3. Пользуясь методом начальных параметров, найти прогибы посредине пролета и на свободном конце балки, изображенной на рисунке. Сечение I №20.

$$a = 2 \text{ M}; \ q = 1 \text{T/M}; \ P = qa = 2 \text{T};$$

Критерии оценки знаний студентов при решении задач

Оценка «отлично» выставляется при условии правильного решения и оформлении задачи с указанием аналитического вывода расчетных формул, единиц измерения физических величин, а также приведенной при необходимости расчетной схемы;

Оценка «хорошо» выставляется при условии решения и оформлении задачи с указанием аналитического вывода расчетных формул, единиц измерения физических величин, а также приведенной при необходимости расчетной схемы, но с ошибками в вычислениях; Оценка «удовлетворительно» выставляется при условии решения и оформлении задачи с указанием аналитического вывода расчетных формул, но с ошибками в указании единиц измерения физических величин, а также с незначительными ошибками в приведенной при необходимости расчетной схемы;

Оценка «неудовлетворительно выставляется при условии наличия

существенных ошибок в аналитическом выводе расчетных формул, не знания основных единиц измерения физических величин, и неправильном составлении расчетной схемы;

Оценка «неудовлетворительно выставляется при условии наличия существенных ошибок в аналитическом выводе расчетных формул, не знания основных единиц измерения физических величин, и неправильном составлении расчетной.