Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Мунича ИССТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИСКОЙ ФЕДЕРАЦИИ

Должность: Ректор Дата подписания РОЗНЕНЕСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Уникальный программный ключ:

уникальный программный ключ: **имни академика М.Д. Миллионщикова** 236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

УТВЕРЖДЕН

на заседании кафедры «Общая и неорганическая химия»

«22» июня 2023г/, протокол №11

Д.З. Маглаев

Заведующий кафедрой

(подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«КИМИХ»

Направление подготовки

08.03.01 Строительство

Направленность (профиль)

Инженерные системы жизнеобеспечения в строительстве

Квалификация

Бакалавр

Составитель А.А. Атаева

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «Химия»

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Основы квантовой Механики. Теория квантовых чисел.	ОПК-1	1-я рубежная аттестация
2	Основные положения метода МО. Строение атома.	ОПК-1	1-я рубежная аттестация
3	Элементы химической термодинамики	ОПК-1	1-я текущая аттестация 1-я рубежная аттестация
4	Химическое и фазовое равновесие	ОПК-1	1-я текущая аттестация 1-я рубежная аттестация
5	Химическая кинетика	ОПК-1	1-я текущая аттестация 1-я рубежная аттестация
6	Растворы	ОПК-1	1-я рубежная аттестация
7	Электрохимические процессы	ОПК-1	1-я рубежная аттестация
8	Обзор химии элементов	ОПК-1	1-я рубежная аттестация
9	Химическая идентификация	ОПК-1	1-я рубежная аттестация Обсуждение реферата по самостоятельной работе
10	Общие закономерности неорганической химии	ОПК-1	2-я рубежная аттестация
11	Водород и галогены	ОПК-1	2-я рубежная аттестация
12	Халькогены	ОПК-1	2-я текущая аттестация 2-я рубежная аттестация Обсуждение реферата по самостоятельной работе
13	р- Элементы пятой группы	ОПК-1	2-я текущая аттестация 2-я рубежная аттестация Обсуждение реферата по самостоятельной работе
14	р-Элементы четвертой группы	ОПК-1	2-я текущая аттестация 2-я рубежная аттестация Обсуждение реферата по самостоятельной работе

15		ОПК-1	2-я рубежная аттестация
	р-Элементы третьей группы		Обсуждение реферата по
			самостоятельной работе
16	Химия s-элементов	ОПК-1	Лабораторная работа
17	Переходные элементы	ОПК-1	Лабораторная работа
18	Благородные газы	ОПК-1	Контрольная работа

ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ

N₂	Наименование	Краткая характеристика оценочного средства	Представление оценочного
п/	оценочного	оценочного средства	средства в
п	средства		фонде
1.	Коллоквиум	Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде собеседования преподавателя с обучающимися.	Вопросы по темам / разделам дисциплины
2	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу учебной дисциплины.	Комплект контрольных заданий по вариантам
3	Реферат Доклад	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебноисследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.	Темы рефератов, докладов
4.	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов

Вопросы к первой аттестации ТЕСТЫ

- I. Вещества. Вещества простые и сложные. Физические и химические явления. Закон сохранения массы. Физические и химические свойства веществ. Смеси.
 - 1. Химические явления наблюдаются при:
 - 1) грозовых разрядах;
 - 2) смешивании формальдегида и воды;
 - 3) нагревании смеси железных опилок и серы;
 - 4) фильтрование томатного сока.
 - 2. Из одного химического вещества состоит физическое тело:
 - 1) автомобиль;
 - 2) телевизор;
 - 3) мельхиоровая ложка;
 - 4) медная проволока.
 - 3. Растворением в воде можно очистить:
 - 1) железные опилки от примесей древесных опилок;
 - 2) медные опилки от примеси железных опилок;
 - 3) натрий от примеси калия;
 - 4) хлорид натрия от примеси нитрата калия.
- **4.** Магнит можно использовать для разделения на отдельные компоненты смесь, состоящую из:
 - 1) серы и красного фосфора;
 - 2) железных и древесных опилок;
 - 3) речного песка и питьевой соды;
 - 4) поваренной соли и сахара.
- **5.** В воде размешали глину. Разделить полученную неоднородную смесь на отдельные компоненты (воду и глину) можно:
 - 1) фильтрованием на бумажном фильтре;
 - 2) дистилляцией;
 - 3) отстаиванием;
 - 4) с помощью магнита.
- **6.** Фильтрование на бумажном фильтре можно использовать для разделения на отдельные компоненты смесь, состоящую из:
 - 1) воды и уксуса;
 - 2) мела и воды;
 - 3) бензина и воды;
 - 4) воды и сахара.
- 7. C помощью воды и фильтрования можно разделить на отдельные компоненты смесь:
 - 1) поваренной соли и сахара;
 - 2) сахара и древесных опилок;

- 3) поваренной соли и муки;
- 4) гексана и гептана.
- 8. О протекании химического явления обязательно свидетельствует:
- 1) выделение энергии;
- 2) появления запаха;
- 3) образование новых веществ;
- 4) изменение агрегатного состояния вещества.
- **9.** Появлением запаха сопровождаются химические явления, протекающие вследствие:
 - 1) растворения сульфида калия в соляной кислоте;
 - 2) пропускание углекислого газа в известковую воду;
 - 3) грозовых разрядов;
 - 4) растворения питьевой соды в серной кислоте.
- **10.** Образованием осадка сопровождаются химические явления, протекающие в результате:
 - 1) смешивание водных растворов КОН и HCl;
 - 2) пропускание СО2 в водный раствор Ва(ОН)2;
 - 3) растворение SO_2 в H_2O ;
 - 4) смешивание водных растворов Na₂SO₄ и BaCl₂.

Вопрос	Ответ
1	1, 2, 3
2	4
3	1
4	2
5	1, 2, 3
6	2
7	2, 3
8	3
9	1, 3
10	2, 4

- II. Атом. Химический элемент. Аллотропия. Химические формулы. Химические уравнения. Закон постоянства состава. Молекула. Ион. Вещества молекулярного и немолекулярного строения. Относительные атомная и молекулярная масса.
 - 1. Укажите правильные записи:
 - 1) $M_r(H_2) = 2$;
 - 2) $m_a(F) = 19 u$;
 - 3) $M_r(F_2) = 38 \ г/моль;$
 - 4) M_r (H_2SO_4) = 98 Γ .
- **2.** Укажите число элементов, входящих в состав перечисленных веществ силан, фуллерен, карборунд, графит:
 - 1) 4;
 - 2) 3;
 - 3) 2;
 - 4) 1.

	3.	Ο	химическом	элементе	(a	не	o	простом	веществе)	водород	речь	идет	В
утве	ржд	ени	іях:										
	1)	сам	ый распростр	аненный в	o B	селе	нн	ой;					
	2)	не і	имеет запаха;										
	3)	RΧΩ	лит в состав в	сех киспот	٠.								

- **4.** Отметьте утверждения, в которых говорится о простом веществе (а не о химическом элементе) кислород:
 - 1) входит в состав всех оксидов;

4) в воде массовая доля равна 11,1%.

- 2) участвует в процессе дыхания растений и животных;
- 3) плохо растворим в воде;
- 4) имеет несколько изотопов.
- 5. Как простое вещество, так и химический элемент отражает запись:
- 1) O_2 ;
- 2) O⁻²;
- 3) Cu;
- 4) 2H₂.
- 6. Химический элемент характеризуется:
- 1) распространенностью в природе;
- 2) массовой долей атомов в веществе;
- 3) принадлежностью к определенному типу семейств (s-, p-, d-, f-);
- 4) температурой плавления.
- 7. Простое вещество характеризуется:
- 1) валентностью;
- 2) способностью намагничиваться;
- 3) зарядом ядра;
- 4) растворимостью.
- 8. Как атом, так и простое вещество характеризуется:
- 1) размером;
- 2) массой;
- 3) электроотрицательностью;
- 4) валентными возможностями.
- 9. Зная химическую формулу веществ, можно:
- 1) рассчитать массовые доли атомов элементов;
- 2) найти относительную молекулярную (формульную) массу;
- 3) определить среднюю массу молекулы вещества;
- 4) предсказать растворимость любого вещества в воде.
- 10. Две молекулы кислорода показывает запись:
- 1) 20;
- 2) O₂;
- 3) $2O_2$;
- 4) 2/3 O₃.

Вопрос	Ответ
1	1, 2
2	2
3	1, 3, 4
4	1, 3, 4
5	3
6	1, 2, 3
7	2, 4
8	1, 2
9	1, 2, 3
10	3

III. Моль. Молярная масса. Закон Авогадро. Молярная концентрация газа.

- **1.** Укажите молярную концентрацию (моль/дм 3) H_2 массой 3 г, помещенного в сосуд объемом 5 дм 3 :
 - 1) 0,1;
 - 2) 0,2;
 - 3) 0,3;
 - 4) 0,4.
 - **2.** Один моль воды ($t = 4^{\circ}C$, p = 101 кПа) содержится в ее порции объемом:
 - 1) 22,4 $дм^3$;
 - 2) 0,18 дм³;
 - 3) 36 дм³;
 - 4) 18 дм³.
 - **3.** Наибольшее число молекул ($t = 25^{\circ}$ C, p = 101 кПа) содержится в порции:
 - 1) азота химическим количеством 3 моль;
 - 2) углекислого газа массой 440 г;
 - 3) воды объемом 36 см^3 ;
 - 4) озона объемом 400 дм³.
- **4.** В реакции синтеза аммиака из простых веществ объем азота относится к объему водорода как:
 - 1) 1: 1;
 - 2) 1: 2;
 - 3) 1: 3;
 - 4) 1: 4.
 - **5.** Плотность (н.у.) какого газа равна 1,964 г/дм³?
 - 1) метана;
 - 2) кислорода;
 - 3) озона;
 - 4) углекислого газа.
 - 6. Относительная плотность по гелию равна 12 для газа:
 - 1) оксида углерода (II);
 - 2) оксида углерода (IV);
 - 3) озона;
 - 4) кислорода.

- 7. Относительная плотность газа по гелию равна 4. Чему равна относительная плотность газа по водороду?
 - 1) 2;
 - 2) 8;
 - 3) 16;
 - 4) 32.
 - 8. Один моль содержит порции веществ:
 - 1) 22,4 дм³ жидкой воды;
 - 2) 22,4 дм³ кислорода (н.у.);
 - 3) 48 г озона:
 - 4) 233 г сульфата бария.
- 9. Выберите правильные утверждения. При одинаковых условиях в порциях кислорода и озона равного объема содержится;
 - 1) одинаковое число атомов;
 - 2) одинаковое число молекул;
 - 3) одинаковая масса;
 - 4) разная масса.
- **10.** Выберите правильные утверждения. При одинаковых условиях порции озона и кислорода равной массы:
 - 1) содержат одинаковое число атомов;
 - 2) содержат одинаковое число молекул;
 - 3) занимают равный объем;
 - 4) содержат одинаковое суммарное число протонов в атомах.

Вопрос	Ответ
1	3
2	4
3	4
4	3
5	4
6	3
7	2
8	2, 3, 4
9	2, 3, 4
10	1, 4

IV. Типовые расчетные задачи

- **1.** Смешали серу массой 6,40 г цинковыми опилками химическим количеством 0,15 моль и смесь нагрели. Найдите массу (г) полученного продукта.
- **2.** Смешали равные объемы O_2 и C_2H_2 . Найдите относительную плотность полученной газовой смеси (н.у.) по водороду.
 - 3. Рассчитайте массу (г) атомов хлора в порции хлорида алюминия 13,35 г.
- **4.** Массовая доля кислорода в его смеси с гелием равна 80%. Рассчитайте объемную долю (%) гелия в смеси.
 - 5. Массовая доля атомов хлора в его оксиде равна 47,02%. Укажите формулу оксида.

- **6.** Массовая доля атомов элемента в оксиде 9_3O_4 равна 72,4%. Что это за элемент?
- 7. Даны образцы хлора и аммиака, каждый объемом (н.у.) 2,24 дм³. Во сколько раз число атомов в одном из образцов больше?
- **8.** Газы кислород и азот смешали в массовом отношении 1: 3 соответственно. Найдите массу (г) такой смеси объемом (н.у.) 100 дм^3 .
- **9.** Смешали равные массы газов CH_4 и N_2 . Найдите относительную плотность этой газовой смеси по хлору.
 - 10. Массы порций O_2 и CO равны. Найдите отношение объема CO к объему O_2 .

Вопрос	Ответ
1	14,55 г
2	14,5
3	10,65 г
4	66,7%
5	Cl ₂ O ₅
6	Fe
7	в 2 раза больше в порции аммиака
8	129 г
9	0,287
10	8:7

V. Строение ядер атомов. Изотопы. Нуклиды. Явления радиоактивности

1.	Элект	ронейт	ральный	атом а	азота сод	цержит	7р и	7e.	Ион N	· ³ соде	ржит:

- 1) 7р и 7е;
- 2) 10р и 7е;
- 3) 7р и 10е;
- 4) 4р и 10е.
- **2.** Электронейтральный атом кальция содержит 20р и 20е. Ион Ca²⁺ содержит:
- 1) 20р и 20е№
- 2) 18р и 20е;
- 3) 20р и 18е;
- 4) 20р и 22е.
- 3. Больше протонов, чем электронов содержит частица, символ (формула) которой:
- 1) NH₄⁺;
- 2) Mn;
- 3) S^{2-} ;
- 4) O₂.
- 4. Число протонов равно числу электронов в частице, формула которой:
- 1) NH₄⁺;
- 2) T₂O;
- 3) H_3O^+ ;
- 4) SO₄²-.

- 5. Число протонов в электронейтральном нуклиде:
- 1) всегда равно числу нейтронов;
- 2) всегда равно числу электронов;
- 3) равно атомному номеру элемента в периодической системе;
- 4) равно разности между нуклонным числом и числом тейтронов.
- 6. Массовое число в точности равно относительной атомной массе для нуклида:
- 1) ⁶⁵Cu;
- 2) ¹²C;
- 3) ³⁵Cl;
- 4) 23 Na.
- 7. Электронейтральный атом какого элемента содержит столько же электронов, сколько их содержит в двух ионах NH_4^{+} ?
 - 1) N;
 - 2) F;
 - 3) Ne;
 - 4) Ca.
 - 8. Укажите символ самой тяжелой частицы:
 - 1) α ;
 - 2) p;
 - 3) D;
 - 4) T.
- **9.** Сколько различных по изотопному составу молекул водорода можно получить из нуклидов 1 H, D и T?
 - 1) 4;
 - 2) 6;
 - 3) 8;
 - 4) 10.
- **10.** Сколько различных по изотопному составу молекул воды можно получить из нуклидов 1 H, D, T и 16 O?
 - 1) 2;
 - 2) 4;
 - 3) 6;
 - 4) 8.

Вопрос	Ответ
1	3
2	3
3	2
4	1
5	2
6	2
7	4
8	1
9	2
10	3

VI. Строение электронных оболочек атомов

1. Укажите электронную конфигурацию атома элемента с протонным числом 15: 1) $1s^22s^22p^63s^2$; 2) $1s^22s^22p^63s^23p^1$; 3) $1s^22s^22p^63s^23p^2$; 4) $1s^22s^22p^63s^23p^3$.
2. Какова сокращенная электронная конфигурация атома элемента с порядковым номером 20 ? 1) [Ar] $4s^1$; 2) [Ne] $3s^1$; 3) [Ar] $4s^2$; 4) [Ne] $3s^2$.
 3. Укажите электронную конфигурацию нуклида 1³ H: 1) 1s¹; 2) 1s²; 3) 1s²2s¹; 4) 1s²2s².
 4. Сколько неспаренных электронов содержит нуклид ¹⁵N в основном состоянии? 1) 1; 2) 2; 3) 3; 4) 4.
5. Укажите сокращенную электронную конфигурацию основного состояния атома марганца: 1) [Ar] $3d^34s^2$; 2) [Ar] $3d^54s^2$; 3) [Ar] $3d^54s^1$; 4) [Ar] $3d^64s^2$.
 6. Число неспаренных электронов в атоме фосфора в основном состоянии равно: 1) 5; 2) 4; 3) 3; 4) 2.
7. Наибольшее число вакантных (незаполненных) орбиталей на внешнем электронном слое в основном состоянии имеет атом: 1) Na; 2) A1; 3) P; 4) C1.
 8. Укажите число незаполненных 3d-орбиталей в основном состоянии атома V: 1) 4; 2) 3; 3) 2;

- **4)** 1.
- 9. Число неспаренных электронов в основном состоянии атома Сг равно:
- 1) 6;
- 2) 5;
- 3) 4;
- 4) 3.
- 10. Укажите суммарное число s-электронов в основном состоянии атома Сu:
- 1) 8;
- 2) 6;
- 3) 7;
- 4) 5.

Вопрос	Ответ
1	4
2	3
3	1
4	3
5	3
6	3
7	1
8	3
9	1
10	3

VII. Периодическая система химических элементов

- 1. Легче остальных перечисленных электрон теряет атом:
- 1) Na;
- 2) Mg;
- 3) Al;
- 4) Si.
- 2. Какие утверждения справедливы для последовательности элементов С, N, O?
- 1) слева направо уменьшается радиус атома;
- 2) слева направо уменьшается электроотрицательность атомов;
- 3) справа налево возрастает число электронных слоев;
- 4) слева направо увеличивается число валентных электронов.
- **3.** Атом элемента 3-го периода в основном состоянии содержит три неспаренных электрона. Каковы формулы летучего водородного соединения и высшего оксида элемента.
 - 1) ЭН2 и Э2О3:
 - 2) ЭН₃ и Э₂О₃;
 - 3) ЭН3 и Э2О5;
 - 4) ЭН₂ и Э₂О₅.
- **4.** Расположенные в одном и том же периоде химические элементы Са и Se различаются между собой:
 - 1) числом валентных электронов в атоме;
 - 2) радиусом атома;

- 3) формулой высшего оксида;
- 4) числом электронных слоев в атоме.
- **5.** Формула высшего оксида элемента $Э_2O_5$. Укажите формулу его летучего водородного соединения:
 - 1) **Э**H;
 - 2) $3H_2$;
 - 3) 3H₃;
 - 4) 3H₄.
- **6.** Катион некоторого элемента \mathfrak{Z}^{3+} имеет электронную конфигурацию $1s^22s^22p^63s^23p^6$. К какому семейству относится элемент Э?
 - 1) s;
 - 2) p;
 - 3) d;
 - 4) f.
- 7. К какому семейству относится элемент, катион которого \mathfrak{I}^{2+} имеет электронную конфигурацию $1s^22s^22p^63s^23p^6$?
 - 1) s;
 - 2) p;
 - 3) d;
 - 4) f.
- 8. Зная только номер группы А, в которой расположен элемент, можно для него предсказать:
 - 1) формулу водородного соединения;
 - 2) число энергетических уровней в атоме;
 - 3) формулу высшего оксида;
 - 4) число валентных электронов в атоме.
- **9.** Формула высшего оксида элемента 3_2O_7 . Укажите электронную конфигурацию валентных электронов атома элемента:
 - 1) ns^2np^2 ;
 - $2) \text{ ns}^2 \text{np}^3$
 - 3) ns²np⁴; 4) ns²np⁵.
- 10. Плотность простейшего водородного соединения некоторого элемента такая же, как и у кислорода. Укажите сокращенную электронную конфигурацию атома элемента:
 - 1) ... $2s^2 2p^2$:
 - 2) ... $3s^2 3p^4$:
 - 3) ... $3s^23p^2$:
 - 4) ... $2s^2 2p^5$.

Вопрос	Ответ
1	1
2	1
3	2
4	1, 2, 3
5	3
6	3

7	1
8	1, 3, 4
9	4
10	3

VIII. Природа и типы химических связей. Ковалентная связь

4	TT.	~			~	
	Τοπρκό πο	ООМЕННОМУ	механизму	ковалентные	связи образованы	B.
т.	I ONDRO HO	Comonitory	Mozallismy	RODUSTOTTTIBLE	constitution	υ.

- 1) молекуле воды;
- 2) ионе аммония;
- 3) молекуле аммиака;
- 4) молекуле фторида бора (III).

	2. По	донорно-акцепторному	механизму	химическая	связь	образуется	В	молекулах
(иона	ax):							

- 1) H₃N · BF₃; 2) H₃O⁺;
- 3) NH₃;
- 4) CO₂.

3. Атом с электронной конфигурацией $1s^22s^22p^3$ может образовать ковалентных связей по обменному механизму:

- 1) четыре;
- 2) три;
- 3) две;
- 4) одну.

4. Атом с электронной конфигурацией $1s^22s^22p^4$ может образовать ковалентных связей по обменному механизму:

- 1) четыре;
- 2) три;
- 3) две;
- 4) одну.

5. Только одну ковалентную связь по обменному механизму могут образовать атомы элементов:

- 1) N;
- 2) H;
- 3) Cl;
- 4) O.

6. Три связи по обменному механизму и одну по донорно-акцепторному может образовать атом:

- 1) C;
- 2) O;
- 3) N;
- 4) F.

7. Две связи по обменному механизму и две по донорно-акцепторному может образовать атом:

1) H;

- 2) F;
- 3) O;
- 4) Li.
- **8.** При образовании химической связи в роли акцептора электронной пары могут выступать:
 - 1) атом Н;
 - 2) ион H⁺;
 - 3) анион Н⁻;
 - 4) молекула ВҒ3.
- **9.** При образовании химической связи в качестве донора электронной пары могут выступать:
 - 1) атом Н;
 - 2) анион Н⁻;
 - 3) молекула NH₃;
 - 4) молекула СН4.
- **10.** Связь, образованная по донорно-акцепторному механизму, присутствует в частицах:
 - 1) HNO₃;
 - 2) H₂O;
 - 3) NH₃;
 - 4) CO.

Вопрос	Ответ
1	1, 3
2	1, 2
3	2
4	3
5	2, 3
6	3
7	3
8	2, 4
9	2, 4
10	1, 4

Оксиды

- 1. Оксид алюминия проявляет кислотные свойства, реагируя с:
- 1) H₂O;
- 2) HNO₃;
- 3) KOH;
- 4) Na₂O.
- 2. Оксид меди (II) и оксид цинка проявляют основные свойства, реагируя с:
- 1) H_2 ;
- 2) HCl;
- 3) H₂O;
- 4) CO.

 3. Укажите формулу оксидов, которые могут взаимодействовать с кислородом: 1) CO₂; 2) CO; 3) P₂O₅; 4) SO₂.
4. В пробирки, содержащие оксиды Al_2O_3 , SO_3 , P_2O_5 , K_2O , SiO_2 , добавили воду. Лакмус приобретает красную окраску в приборках с оксидами: 1) Al_2O_3 , SO_3 ; 2) SO_3 , P_2O_5 ; 3) K_2O , P_2O_5 ; 4) SO_3 , P_2O_5 , SiO_2 .
5. Между собой могут взаимодействовать оксиды, образованные элементами с атомными номерами: 1) 1 и 13; 2) 4 и 11; 3) 1 и 30; 4) 12 и 16.
6. В пробирки, содержащие оксиды BaO, CuO, N ₂ O ₅ , Na ₂ O и ZnO, добавили воду. Число пробирок, в которых лакмус приобретает синюю окраску, равно: 1) 5; 2) 4; 3) 3; 4) 2.
 7. С кислородом HE могут взаимодействовать оксиды: 1) Al₂O₃; 2) CO; 3) SO₃; 4) H₂O.
8. При взаимодействии какого оксида с водным раствором КОН образуется соль состава $K[\Im(OH)_4]$? 1) MnO_3 ; 2) N_2O_3 ; 3) Cr_2O_3 ; 4) CrO_3 .
9. Укажите формулу оксида, молекула которого содержит четыре неподеленные пары электронов: 1) SO_2 ; 2) CO_2 ; 3) SO_3 ; 4) H_2O .
10. В порядке последовательного увеличения числа неподеленных пар электронов в молекуле формулы оксидов записаны в ряду: 1) H ₂ O, SO ₂ , SO ₃ , CO ₂ ; 2) H ₂ O, SO ₂ , CO ₂ , SO ₃ ;

- 3) H₂O, SO₃, SO₂, CO₂;
- 4) H₂O, CO₂, SO₂, SO₃.

Вопрос	Ответ
1	3, 4
2	2
3	2, 4
4	2
5	2, 4
6	4
7	1, 3, 4
8	3
9	2
10	4

Основания

- **1.** Гидроксид алюминия образуется при взаимодействии (электролиты взяты в виде водных растворов):
 - 1) Al₂O₃ и H₂O;
 - 2) Al₂O₃ и KOH;
 - 3) Al(NO₃)₃ (4,26 г) и Ba(OH)₂ (5,13 г);
 - 4) Al₂(SO₄)₃ (3,42 г) и КОН (6,72 г).
- **2.** Между собой взаимодействуют (сильные основания взяты в виде водных растворов):
 - 1) HCl и Ba(OH)₂;
 - 2) NaOH и Be(OH)₂;
 - 3) KOH и NaCl;
 - 4) Ca(OH)₂ и SO₃.
 - 3. С разбавленным раствором NaOH реагирует каждое из веществ в группах:
 - 1) AL, KCI, (NH₄)₂SO₂;
 - 2) P₂O₂, AI(OH)₃, CuCI₂;
 - 3) Mn₂O₇, ZnO, H₃PO₄;
 - 4) SO₂, FeCI₃, Zn(OH)₂.
 - 4. Щелочи реагируют со всеми:
 - 1) растворимыми солями;
 - 2) кислотами;
 - 3) оксидами;
 - 4) амфотерными гидроксидами.
 - 5. Основание можно получить при взаимодействии:
 - 1) Fe₂O₃ и H₂O;
 - 2) MgSO₄ (p-p) и NaOH (p-p, избыток);
 - 3) Zn(NO₃)₂ и KOH (p-p, избыток);
 - 4) КиН2О.

- **6.** Нитрат меди (II) образуется, когда между собой реагируют (электролиты взяты в виде водных растворов):
 - 1) CuO и HNO₃;
 - 2) Cu(OH)₂ и NaNO₃;
 - 3) CuCl₂ и NaNO₃;
 - 4) Cu(OH)₂ и KNO₃.
 - 7. Оба реагента H_2SO_4 (разб.) и KOH (разб.) взаимодействуют с:
 - 1) CuCl₂;
 - 2) Al₂O₃;
 - 3) Cr(OH)₃;
 - 4) CaO
 - 8. Гидроксид натрия образуется при взаимодействии:
 - 1) NaCl (p-p);
 - 2) FeO;
 - 3) H₂SO₄;
 - 4) HNO₃
 - 9. При комнатной температуре гидроксид меди (II) реагирует с:
 - 1) NaCl (p-p);
 - 2) FeO;
 - 3) H₂SO₄;
 - 4) HNO₃.
 - **10.** Гидроксид цинка и оксид алюминия по отдельности взаимодействуют с (25⁰C):
 - 1) соляной кислотой и магнием;
 - 2) серной кислотой и гидроксидом натрия;
 - 3) азотной кислотой и хлоридом калия;
 - 4) гидроксидом бария и нитратом натрия.

Вопрос	Ответ
1	3
2	1, 2, 4
3	3
4	1, 2, 4
5	2, 4
6	1, 2
7	2, 3
8	2, 3, 4
9	3, 4
10	2

Кислоты

- **1.** Одноосновным кислотам отвечают все кислотные остатки (заряд не указан):
 - 1) CH₃COO, SO₄, S;
 - 2) NO₃, NO₂, CH₃COO;
 - 3) NO₂, SO₃, NO₃;
 - 4) CH₃COO, PO₄, Cl.

2. Укажите формулу четвертой «лишней» кислоты:1) HCl;2) HBr;
3) HI;
4) HF.
3. Сероводород образуется, когда между собой реагируют: 1) HCl (p-p) и сульфат натрия;
1) ПСТ (р-р) и сульфат натрия; 2) HNO ₃ (конц.) и сульфид калия;
2) 11.03 (конд.) и сульфид калия, 3) HCl (p-p) и сульфид натрия;
4) H ₂ SO ₄ (разб.) и сера.
4) 112304 (разо.) и сера.
4. Различить пробирки с разбавленными солями и серной кислотами можно с
помощью:
1) питьевой соды;
2) гидроксида калия;
3) гидроксида бария;
4) меди.
5. Разбавленные водные растворы HCl и H ₃ PO ₄ можно различить с помощью: 1) NaNO ₃ ;
2) AgNO ₃ ;
3) Ca(OH) ₂ ;
4) Na ₂ CO ₃ .
6. Формула кислоты, отвечающей высшей степени окисления атома элемента, H_4 Э $_2$ О $_7$. Какие еще кислоты соответствуют такой степени окисления элемента? 1) H_2 Э $_2$ О $_7$; 2) H ЭО $_3$; 3) H_5 ЭО $_6$; 4) H_3 ЭО $_4$.
7. Как H ₂ SO ₄ (разб.), так и HCl (разб.) реагируют с: 1) CuO; 2) Al(NO ₃) ₃ ; 3) BeOH) ₂ ; 4) Ag.
 8. Пробирки с разбавленными H₂SO₄ и H₃PO₄ можно различить с помощью: 1) КОН; 2) MgO; 3) Cu; 4) лакмуса.
9. Кислоты образуются при растворении в воде оксидов элементов семейств:1) s- и p-;2) p- и d-;3) s- и d-;

- 4) s-, p-, d-.
- 10. Кислотные свойства соединений постепенно нарастают в нруппах:
- 1) HF, H₂SO₄, HClO₄;
- 2) H₂SO₄, HF, HClO₄;
- 3) HAlO₂, H₂CO₃, HNO₃;
- 4) H₂CO₃, HAlO₂, HNO₃.

Вопрос	Ответ
1	2
2	4
3	3
4	3
5	2, 3
6	2, 4
7	1, 3
8	2
9	2
10	1, 3

Соли

- **1.** Соль образуется, когда с H_2SO_4 (разб.) реагируют:
- 1) KCI (p-p);
- 2) Na₂CO₃;
- 3) Cu;
- 4) Ca(OH)2.
- **2.** Укажите ряд, в котором каждое из веществ в реакции с соляной кислотой образует соль:
 - 1) Zn, AI₂O₃, K₂SO₃;
 - 2) AI(OH)₃, ZnO, BaSO₄;
 - 3) NaNO₂, KF, Ca(NO₃)₂;
 - 4) CuO, NaOH, SO₃.
- **3.** Даны формулы веществ: Mg, Mg(OH)₂, MgCO₃, MgO. Сколько из них в реакции с азотной кислотой образуют соль (соли?)
 - 1) 4;
 - 2) 3;
 - 3) 2;
 - 4) 1.
 - 4. С образованием соли с водным раствором сульфата меди (II) реагируют металлы.
 - 1) Zn;
 - 2) Hg;
 - 3) Ag;
 - 4) Fe.
 - 5. В водном растворе химическое взаимодействие возможно между солями:
 - 1) Na₂S и CuCI₂;
 - 2) CaCI₂ и Na₂CO₃;
 - 3) Ba(NO₃)₂ и KCI;

- 4) AgNO₃ и NaF.
- **6.** Соль образуется, когда к раствору BaCI₂ добавляют:
- 1) азотную кислоту;
- 2)серную кислоту;
- 3) сульфат калия;
- 4) нитрат натрия.
- 7. Вводном растворе осуществимы реакции между:
- 1) NaCI и BaCO₃;
- 2) ZnSO₄ и KOH;
- 3) Zn(NO₃)₂ и Cu;
- 3) FeS и HCI.
- 8. Соль можно получить при взаимодействии:
- 1) ZnSO₄ (p-p) и Mg;
- 2) AI₂O₃ и HNO₃;
- 3) Fe(OH)₃ и KCI (p-p);
- 4) BaCO₃ и NaNO₃ (p-p).
- 9. Сульфат кальия образуется, когда водный раствор хлорида кальция реагирует с:
- 1) NaHSO₃;
- 2) BaSO₄;
- 3) Na₂SO₄;
- 4) K₂SO₃.
- 10. Соль аммония можно получить при взаимодействии:
- 1) аммиака и воды;
- 2) аммиака и разбавленной серной кислоты;
- 3) сульфата аммония хлорида бария;
- 4) хлорида аммония и нитрата серебра (I).

Вопрос	Ответ
1	2, 4
2	1
3	1
4	1, 4
5	1, 2
6	2, 3
7	2, 3
8	1, 2
9	3
10	2, 3, 4

Связь между классами неорганических веществ

- 1. Могут совместно находиться в водном растворе вещества, формулы которых:
- 1) (MgOH)Cl и HCl;
- 2) CuOH)NO₃ и KOH;
- 3) NH₄HCO₃ и NH₃ · H₂O;

4) NaHCO₃ и H₃CO₃. 2. С каждым из веществ, формулы которых О2, КОН, Н2О, взаимодействует: 1) аммиак: 2) оксид серы (VI); 3) оксид серы (IV); 4) оксид магния. 3. С КОН (p-p) реагирует каждое из веществ, формулы которых приведены в рядах: 1) CO₂, P₂O₅, NaHCO₃, Al(OH)₃; 2) ZnO, Fe(OH)₂, BaCl₂, H₂SO₄; 3) Al₂O₃, Ca(HSO₃)₂, Zn(OH)₂, N₂O₅; 4) CuCl₂, SO₃, BeO, SiO₂. 4. Дигидроортофосфат аммония в водном растворе реагирует с веществами, формулы которых: 1) NH₃; 2) KOH; 3) H₃PO₄; 4) H₂SO₄. **5.** Для осуществления перехода $Ca(HSO_3)_2 \rightarrow CaSO_3$ необходимо взять: 1) H_2SO_3 ; 2) KOH: 3) H₂SO₄; 4) Ca(OH)₂. 6. Для осуществления перехода NaHSO₃ → Na₂SO₄ необходимо взять: 1) H₂SO₃; 2) KOH; 3) H₂SO₄; 4) K₂SO₄. 7. Карбонат кальция реагирует, а сульфат калия – нет, с водным раствором: 1) NaCl; 2) CO₂; 3) HNO₃; 4) NH₄NO₃. 8. При нагревании соли могут образовываться: 1) кислотный и основный оксиды; 2) другая соль и простое вещество; 3) кислота и щелочь; 4) два газообразных (н. у.) вещества. 9. В водном растворе возможно взаимодействие между веществами, формулы которых: 1) K₂CO₃ и CaCl₂; 2) Zn и CuSO₄; 3) Cu и Zn(NO₃)₂; 4) H₂S и CuSO₄.

- **10.** Укажите формулы веществ, при нагревании которых образуются соединения, которые могут реагировать с разбавленными растворами щелочей с образованием солей:
 - 1) KNO₃;
 - 2) Al(OH)₃;
 - 3) CaCO₃;
 - 4) Cu(OH)₂.

Вопрос	Ответ
1	4
2	3
3	1, 3, 4
4	1, 2, 4
5	2, 4
6	3
7	2, 3
8	1, 2, 4
9	1, 2, 4
10	2, 3

Вопросы к 2 аттестации

Окислительно-восстановительные реакции

- **1.** Укажите уравнение реакции, в результате которой степень окисления атомов азота понижается с 0 до -2:
 - 1) $N_2 + 4H_2O = N_2H_4 + 4OH^-$;
 - 2) $N_2 + 4H_2O = 2NH_2OH + 2OH^-$;
 - 3) $N_2 + 6H^+ = 2NH_3$;
 - 4) $N_2 + 8H^+ = 2NH_4^+$.
- **2.** Отметьте уравнение реакции, в результате которой степень окисления атомов хлора повышается с 0 до +7:
 - 1) $HC1 + 2H_2O = C1O_2 + 5H^+$;
 - 2) $Cl_2 + 6H_2O = 2ClO_3^- + 12H^+$;
 - 3) $Cl_2 + 8H_2O = 2ClO_4^- + 16H^+$;
 - 4) $2HC1 + H_2O = C1_2O + 4H^+$.
- **3.** Укажите схемы реакций, в результате которых степень окисления атомов хрома понижается c+6 до +3:
 - 1) $CrO_4^{2-} + 4H^+ = CrO_2^- + 2H_2O$;
 - 2) $CrO_4^{2-} + 4H_2O = Cr(OH)_3 + 5OH^{-}$;
 - 3) $Cr_2O_7^{2-} + 14H^+ = 2Cr^{3+} + 7H_2O_7$
 - 4) $CrO_4^{2-} + 8H^+ = Cr + 4H_2O$.
- **4.** Отметьте схемы или уравнения, в которых пероксид водорода является восстановителем:
 - 1) $H_2O_2 + 2H^+ = 2H_2O$;
 - 2) $H_2O_2 = O_2 + 2H^+$:
 - 3) $H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + O_2 + H_2O_7$
 - 4) $PbS + H_2O_2 PbSO_4 + H_2O$.
- **5.** Укажите уравнения реакций, в которых степень окисления атомов фосфора понижается c+3 до +1:

```
1) H_3PO_3 + 2H^+ = H_3PO_2 + H_2O_3
```

2)
$$H_3PO_4 + 4H^+ = H_3PO_2 + 2H_2O_3$$

3)
$$HPO_3^{2-} + 2H_2O = H_3PO_2^{-} + 3OH^{-}$$
;

4)
$$PO_4^{3-} + 2HPO_3^{2-} + 2OH^{-}$$
.

6. Все элементы, какого ряда окисляются в окислительно-восстановительной реакции, представленной схемой

$$Cr_2S_3 + Mn^{2+}NO_3^{-+} + CO_3^{2-} \rightarrow CrO_4^{2-} + MnO_4^{2-} + NO + CO_2 + SO_4^{2-}$$
?

- 1) C, S, Cr;
- 2) Mn, N, S;
- 3) Mn; S, Cr;
- 4) Cr, S, N.
- 7. Укажите символы элементов, которые окисляются в реакции, схема которой $FeS_2 + HNO_3 \rightarrow Fe(NO_3)_3 + H_2SO_4 + NO + H_2O$:
- 1) Fe;
- 2) N;
- 3) S;
- 4) O.
- **8.** В реакции, схема которой $Cr_2O_7^{2-} + 14H^+ + 6CI^- = 3CI_2 + 2Cr^{3+} + 7H_2O$, окислителями являются атомы элемента, символ которого:
 - 1) Cl;
 - 2) Cr;
 - 3) H;
 - 4) O.
 - 9. Укажите уравнения процессов окисления:
 - 1) $Cr(OH)_3 + 5OH^- = CrO_4^{2-} + 4H_2O;$
 - 2) $ClO_2^- + 2OH^- = ClO_3^- + H_2O_3^-$
 - 3) $ZnO_2^{2-} + 2H_2O = Zn^0 + 4OH^-$;
 - 4) $H_2PO_2^- + 2H^+ = H_3PO_2$.
 - 10. При нагревании нитрата серебра (I) восстанавливаются атомы элемента(ов):
 - 1) только серебра;
 - только азота;
 - 3) серебра и азота;
 - 4) серебра и кислорода.

Вопрос	Ответ
1	1
2	3
3	1, 2, 3
4	2, 3
5	1, 3
6	3
7	1, 3
8	2
9	1, 2
10	3

Тепловой эффект химической реакции

- 1. Отметьте уравнения реакций, для которых величина теплового эффекта будет примерно одинаковой:
 - 1) $KOH_{(p-p)} + HCl = KCl_{(p-p)} + H_2O_{(x)};$
 - 2) $N_2 = N + N$;
 - 3) $NaOH_{(p-p)} + HNO_{3(p-p)} = NaNO_3(p-p) + H_2O_{(x)}$;
 - 4) $CaCO_{3(T)} = CaO_{(T)} + CO_{2(\Gamma)}$.
 - 2. Укажите схемы экзотермических процессов:
 - 1) $O + O = O_2$;
 - 2) $H_2O_{(\kappa)} \rightarrow H_2O_{(\Gamma)}$;
 - 3) $2KNO_{3(T)} = 2KNO_{2(T)} + O_{2(\Gamma)}$;
 - 4) AI $(1s^22s^22p^63s^23p^1)$ AI $(1s^22s^22p^63s^13p^2)$.
 - 3. Укажите схемы экзотермических процессов:
 - 1) C $(1s^22s^12p^3) \rightarrow C (1s^22s^22p^2)$;
 - 2) $F + F \rightarrow F_2$:
 - 3) $C_6H_{12}O_{6(T)} + 6O_{2(\Gamma)} = 6CO_{2(\Gamma)} + 6H_2O_{(\mathcal{H})};$
 - 4) $N_2 + O_2 = 2NO$.
 - 4. Отметьте уравнения процесса, протекающего с наибольшим выделением теплоты:
 - 1) $2H_{2(\Gamma)} + O_{2(\Gamma)} = 2H_2O_{(T)}$;
 - 2) $2H_{2(\Gamma)} + O_{2(\Gamma)} = 2H_2O_{(K)}$;
 - 3) $2H_{2(\Gamma)} + O_{2(\Gamma)} = 2H_2O_{(\Gamma)}$;
 - 4) $CO_{2(\Gamma)} \rightarrow CO_{2(\Gamma)}$.
- 5. На основании термического уравнения реакции горения пропена $C_3H_{6(\Gamma)}+9/2O_{2(\Gamma)} \rightarrow CO_{2(\Gamma)}+3H_2O_{(\Gamma)}+2060$ кДж укажите тепловой эффект (кДж) реакции горения смеси C_3H_6 и O_2 химическим количеством 1 моль со стехиометрическим соотношением объемов реагентов:
 - 1) 1498;
 - 2) 1124;
 - 3) 374,5
 - 4) 187, 3.
 - 6. Укажите экзотермические процессы:
 - 1) $F_{(\Gamma)}^{0} + e^{-} \rightarrow F_{(\Gamma)}^{-}$;
 - 2) $H_{2(\Gamma)} \rightarrow 2H_{(\Gamma)}$
 - 3) $Mg_{(r)} \rightarrow Mg_{(r)}^{2+} + 2e^{-};$
 - 4) $Ca_{(\Gamma)}^{2+} + 2e^{-} = Ca_{(\Gamma)}$.
 - 7. Эндотермическими будут процессы:
 - 1) $Br_{(r)} \to Br_{(r)}^{0} + e^{-}$;
 - 2) $I_{2(\Gamma)} \rightarrow I_{2(\Gamma)}$;
 - 3) $Hg_{(T)} \rightarrow Hg_{(\mathcal{K})}$;
 - 4) $CI_{(\Gamma)}^{0} + e^{-} \rightarrow CI_{(\Gamma)}^{-}$.

- 8. Энергия связи H-CI равна 431 кДж/моль, а энергия связей H-H и CI-CI соответственно равны 436 кДж/моль. На основании этих данных рассчитайте тепловой эффект (кДж), реакции образования 1 моль хлороводорода из простых веществ:
 - 1) + 92;
 - 2) + 184;
 - 3) -92;
 - 4) -184.
- **9.** Энергия химической связи Н-Н равна 7,24*10⁻¹⁹Дж. Укажите тепловой эффект(кДж) реакции превращения в атомы молекулярного водорода массой 4г:
 - 1) +435,8;
 - 2) + 871,7;
 - 3) -871,7;
 - 4) -435,8.
- **10.** Первая энергия ионизации атома хлора равна $20.8*10^{-19}$ Дж. Найдите энергию (кДж) которую надо затратить для перевода в катионы всех атомов, содержащихся в порции атомарного хлора массой 7.1г:
 - 1) 62,6;
 - 2) 125,2;
 - 3) 187,8;
 - 4) 250,4.

Вопрос	Ответ
1	1, 3
2	2, 3, 4
3	2, 3, 4 1, 2, 3
4	1
5	3
6	1, 4
7	1, 2, 3
8	1
9	3
10	4

Скорость химической реакции и химическое равновесие

- **1.** Увеличить выход продуктов обратимой реакции $N_{2(r)}+3H_{2(r)}=2NH_{3(r)}++Q$ можно:
 - 1) повышая давление;
 - 2) используя катализатор;
 - 3) увеличивая концентрацию водорода;
 - 4) повышая температуру.
- **2.** В наибольшей степени сместить в сторону образования продукта равновесие в системе $2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)} + Q$ можно, если одновременно:
 - 1) повысить и давление, и температуру;
 - 2) понизить давление, и температуру;
 - 3) понизить давление, повысить температуру;
 - 4) повысить давление, понизить температуру.
- **3.** Равновесие $SO^{2-}_{3(p-p)} + H_2O_{(ж)} = HSO^{-}_{3(p-p)} + OH^{-}_{(p-p)} Q$ можно сместить вправо, если:

- 1) добавить кислоты;
- 2) добавить воду;
- 3) добавить щелочь;
- 4) повысить температуру.
- 4. Уменьшение объема сместить в сторону исходных веществ равновесие процессов:
- 1) $CaCO_{3(T)} = CaO_{(T)} + CO_{2(\Gamma)};$
- 2) $CO_{2(\Gamma)} + H_2O_{(\mathcal{H})} = H_2CO_{3(p-p)};$
- 3) $H_2SO_{3(p-p)} = H_2O_{(ж)} + SO_{3(r)};$
- 4) $2NH_{3} = N_{2(\Gamma)} + H_{2(\Gamma)}$.
- **5.** Увеличение объема сместит равновесие в сторону продукта (продуктов) реакции в случае процессов:
 - 1) $N_{2(r)} + O_{2(r)} = 2NO_{(r)}$;
 - 2) $C_{(r)} + O_{2(r)} = 2CO_{(r)}$;
 - 3) $2SO_{3(\Gamma)} = SO_{2(\Gamma)} + O_{2(\Gamma)}$;
 - 4) $BaO_{(T)} + CO_{2(\Gamma)} = BaCO_{3(T)}$.
- **6.** в сторону образования сероводорода равновесие процесса $H_2S_{(p-p)} = H^+_{(p-p)} + HS^-_{(p-p)} Q$ сместится при:
 - 1) добавлении в раствор NaHS;
 - 2) подкислении раствора;
 - 3) понижении температуры;
 - 5) подщелачивании раствора.
 - 7. При повышении температуры:
 - 1) возрастает скорость как экзотермических, так и эндотермических реакций:
 - 2) скорость экзотермических реакций возрастает, а эндотермических уменьшается;
 - 3) скорость экзотермических реакций уменьшается, а эндотермических возрастает;
 - 4) уменьшается скорость как экзо-, так эндотермических реакций.
- **8.** Равновесие процесса $CO_{2(\Gamma)} + H_2O_{(ж)} = H_2CO_{3(p-p)} + Q$ в сторону образования угольной кислоты смещают:
 - 1) повышение давления;
 - 2) повышение температуры;
 - 3) увеличение концентрации углекислого газа;
 - 4) понижение давления.
 - 9. Изменение химического количества вещества А НЕ повлияет на скорость реакции:
 - 1) $A_{(r)} + B_{(r)} = AB_{(r)}$;
 - 2) $2A_{(r)} + B_{(r)} = A_2B_{(r)}$;
 - 3) $2A_{(T)} + 2B_{(T)} = 2AB_{(T)}$;
 - 4) $A_{(\Gamma)} + 2B_{(\Gamma)} = AB_{2(\Gamma)}$.
- **10.** Скорость гомогенной экзотермической реакции синтеза аммиака можно увеличить, если:
 - 1) повысить температуру;
 - 2) использовать катализатор;
 - 3) увеличить давление;
 - 4) понизить температуру.

Вопрос	Ответ
1	1, 3
2	4
3	1, 2, 4
4	1, 3, 4
5	2, 3
6	1, 2, 3
7	1
8	1, 3
9	3
10	1, 2, 3

Растворы

- 1. Укажите верные утверждения:
- 1) при образовании растворов энергия может как выделяться, так и поглощаться;
- 2) концентрированный раствор всегда является насыщенным;
- 3) насыщенный раствор может быть разбавленным;
- 4) при увеличении температуры растворимость газов в жидкость как правило уменьшается.
- **2.** Химическое взаимодействие (20°C) влияет на растворимость в воде веществ, формулы которых;
 - 1) N_2 ;
 - 2) SO₂;
 - 3) CO;
 - 4) CO₂.
 - 3. Образование водородных связей оказывает влияние на растворимость в воде:
 - 1) аммиака;
 - 2) бензола;
 - 3) фтороводорода;
 - 4) сульфата калия.
 - 4. Растворимость веществ в воде всегда увеличивается при:
 - 1) их химическом взаимодействии с водой;
 - 2) понижение давления (для газов);
 - 3) образовании водородных связей между молекулами воды и растворимого вещества;
 - 4) повышение температуры.
- **5.** Необходимо как можно быстрее растворить кусочек сахара в воде. Для этого необходимо:
 - 1) охладить воду;
 - 2) подогреть воду;
 - 3) раздробить сахар;
 - 4) перемешивать раствор.
 - 6. Хуже всего в воде растворяется:
 - 1) пропанол-1;
 - 2) пропановая кислота;

- 3) пропаналь;
- 4) пропанол-2.
- 7. Даны растворы KBr, KNO₃, CaCl₂ и Na₂SO₄ с одинаковой плотностью и одинаковой молярной концентрацией. Наибольшей будет массовая доля раствора:
 - 1) KBr;
 - 2) KNO₃;
 - 3) CaCl₂;
 - 4) Na₂SO₄.
 - 8. Укажите формулы вещества, насыщенные растворы которых будут разбавленными:
 - 1) N_2 ;
 - 2) HF;
 - 3) CaSO₄;
 - 4) KNO₃.
 - 9. В воде наименее растворим газ, формула которого:
 - 1) HCl;
 - 2) SO₂;
 - 3) O₂;
 - 4) NH₃.
 - 10. Раствор образуется, если с водой массой 50 г смешать 50 г:
 - 1) этанола;
 - 2) азотной кислоты;
 - 3) бензола;
 - 4) мела

Вопрос	Ответ
1	1, 3, 4
2	2, 4
3	1, 3
4	1, 2, 3 2, 3, 4
5	2, 3, 4
6	3
7	2, 3, 4
8	2, 3, 4
9	2
10	1

Электролитическая диссоциация

- 1. Несмотря на наличие в водных растворах электролитов заряженных частиц, раствор в целом электронейтрален. Это объясняется тем, что:
 - 1) ионы в растворах гидратированы;
 - 2) число анионов всегда равно числу катионов;
 - 3) ионы в растворе движутся хаотически;
 - 4) суммарные электрические заряды катионов и анионов численно равны.
 - 2. Водные растворы электролитов проводят электрический ток за счет:

- 1) только электронов;
- 2) катионов и электронов:
- 3) анионов и электронов: 4) катионов и анионов.
- 3. Какую роль играет вода при растворении хлорида калия?
- 1) превращает электронейтральные атомы калия в катионы калия:
- 2) превращает электронейтральные атомы хлора в анионы хлора;
- 3) высвобождает ионы калия и хлора из кристаллической решетки;
- 4) гидратирует ионы калия и хлора.
- 4. Атом хлора и анион хлора между собой различаются:
- 1) размерами;

- 2) химическими свойствами;
- 3) числом электронов
- 4) зарядом ядра.
- 5. рН раствора возрастает, когда в воде растворяют:
- 1) глицин;

- 2) CH₃NH₂;
- 3) жидкое мыло;
- 4) A1₄C₃.
- 6. Электролитическая диссоциация угольной кислоты обратима, так как эта кислота:
- слабая;
- 2) неустойчивая:
- 3) сильная;
- 4) нерастворима в воде.
- 7. Окраска лакмуса изменяется в:
- 1) воде;

- 2) водном растворе NaCl;
- 3) водном растворе НС1;
- 4) водном растворе КОН.
- 8. рН раствора уменьшается, когда в воде по отдельности растворяют:
- 1) HC1и NH₃
- 2) SO₃ и K₂O;
- 3) NH₄C1 и Na₃P0₄;
- 4) NaHS04 и P2 O5
- 9. В разбавленном водном растворе азотной кислоты присутствуют частицы:
- I) H_2O ; 2) H^+ ; 3) HNO_3 4) NO_3
- 10. В разбавленном водном растворе сульфата железа (III) отсутствуют частицы:
- 1) электронейтральные атомы железа;
- 2) гидратированные ионы Fe^{3+} ;
- 3) формульные единицы $Fe_2(S0_4)_3$;
- 4) негидратированные ионы SO^{2-} 4

Вопрос	Ответ
1	4
2	4
3	3, 4,
4	1, 2, 3
5	2, 3
6	1
7	3, 4
8	4
9	1, 2, 4
10	1, 3, 4

Ионные уравнения реакций

между			и 1 моль Na	сокращенном aHSO ₃ и 1 мол 4) 6.	ионном уравнении реакции ъ Ва(ОН) ₂ :
между	растворами,	содержащим	и 1 моль №	аНСО3 и 0,5 м	ионном уравнении реакции оль Ba(OH) ₂ :
	1) 3;	2) 5;	3) 7;	4) 9.	
раство	3 . Сумма корром Ва(ОН) ₂		-	-	уравнении реакции между
	1)2; 2)	3;	3)4;	4) 5.	
в сокр					Укажите сумму коэффициентов сонечного продукта:
избыт	5. Укажите с ком Н ₃ Р0 ₄ :	умму коэффі	ициентов в	сокращенном	уравнении реакции Na ₃ P0 ₄ с
		2) 4;	3) 6;	4) 8.	
коэфф проду	оициентов в со кта:		ионном ура	внении реакци	V). Укажите сумму ии образования конечного
между				-	ионном уравнении реакции грия массой 3,2 г:
между	хлоридом хр	ома (III) масс	сой 1,59 г и	гидроксидом	ионном уравнении реакции калия массой 2,24 г:
	1) 5;	2) 6;	3)3;	4) 4.	
между	9. Даны ионы попарно взят		•	$O_3^-H^+, K^+, OH$	Г. Число возможных реакций
_	1) 6;	2) 5;	3) 4;	4) 3.	
	попарно взят			5O ²⁻ 3 H ⁺ , Ba ²⁺ , 4) 6.	ОН Число возможных реакций
	Вопрос	Ответ			
	1	3			
	2	4			
	4	3			
	5	3			
	6	1			
	-	2			

8	2
9	4
10	2

Неметаллы: общая характеристика электронного строения атома, физических и химических свойств простых веществ и соединений

- 1. Элементы полуметаллы это:
- 1) C, B, N; 2) B, Si, As; 3) Ge, Te, S; 4) I, P, S.
- 2. Укажите формулы соединений, названия которых имеют окончание «ид»:
- 1) Ca₃N₂; 2) CaSO₄; 3) CaO; 4) CaH₂
- **3**. В качестве восстановителей для получения металлов из оксидов используются простые вещестк. 1 неметаллы:
 - 1) углерод; 2) азот; 3) кремний; 4) водород.
- **4**. Минимальная отрицательная степень окисления атома неметалла в соединениях равна:
 - 1) -5; 2) -4; 3) -3; 4) -2.
- 5. Максимальная положительная степень окисления атома неметалла в соединениях равна:
 - 1) + 8; 2) + 7; 3) + 10; 4) + 5.
- **6**. Только окислительные свойства в реакциях с другими веществами проявляет простое вещество:
 - 1) углерод; 2) азот; 3) фтор; 4) фосфор.
- 7. Как положительные, так и отрицательные степени окисления в соединениях проявляют атомы элементом неметаллов, символы которых:
 - 1) S; 2) O; 3) F; 4) N.
 - 8. Единственную степень окисления в сложных веществах всегда проявляет атом:
 - 1) фтора; 2) кислорода; 3) азота; 4) углерода.
- 9. Укажите общую формулу летучих водородных соединений элементов неметаллов VIIA группы:
 - 1) H9; 2) H₂9; 3) 9H₃; 4) 9H₄.
- 10. Неизвестны (пока?) химические соединения для элементов неметаллов, символы которых:
 - 1) He; 2) Xe; 3) Kr; 4)Ne.

Вопрос	Ответ
1	2
2	1, 3, 4
3	$1, 3, \overline{4}$
4	2
5	1
6	3
7	1, 2, 4
8	1

9	1	
10	1, 4	

Водород. Вода

- 1. Укажите, какие характеристики роднят водород с галогенами:
- 1) число валентных электронов в атоме;
- 2) возможность проявлять в соединениях степень окисления, равную -1;
- 3) число электронов, недостающих до полного завершения внешнего электронного слоя;
 - 4) число электронов на внешнем электронном слое.
 - 2. Водород выделяется при взаимодействии:
 - 1) Cu и HC1 (разб.);

2) Zn и H₂S0₄(разб.);

3)NaH и H₂O;

4) С и H,0 (t°).

- 3. Степень окисления атома Н равна -1 в составе:
- 1) SiH₄ и NH₃;

2)CH₄ и CaH₂;

3) LiAlH₄ и SiH₄;

4)НС1 и Н₂О₂".

- 4. Водород восстановитель, реагируя с:
- 1) CuO; 2) K; 3) O₂; 4) C₂H₄.
- 5. При взаимодействии с водой гидрид кальция пропишет свойства:
- 1) окислителя;
- 2) восстановителя;
- 3) ни окислителя, ни восстановителя;
- 4) окислителя и восстановителя.
- 6. Укажите общую формулу гидридов щелочноземельных металлов:
- 1) MeH; 2) MeH₂; 3) MeH₃; 4) MeH₄.
- 7. Отметьте символ металла, которого нужно меньше его по массе для получения одного моля водорода в реакции с разбавленной серной кислотой:
 - 1) Mg; 2) A1; 3) Fe; 4) Zn.
 - 8. С водой может реагировать каждое из веществ в царе:
 - 1) Fe и Cu; 2) KH и H₂; 3) NH₃ и Zn; 4) Ca и Fe.
 - 9. НЕ взаимодействует с водой каждое из веществ в царе:
 - 1) CaO и SiO₂; 2) P₂O₅ и SO₃; 3) К₂O и CaH₂; 4) H₂ и SiO₂
 - 10. При температуре 20 °C вода реагирует с металлами:
 - 1) Ca, Na, A1 (амальгамированный); 2) K, Ba, Zn;
 - 3)Li,Sr,Be;

4) Rb, Cs, Fe.

Вопрос	Ответ
1	2, 3
2	2, 3, 4
3	3

4	1, 3, 4
5	7
6	2
7	2
/	2 1
8	3, 4
9	4
10	1

ТЕМА: «ХИМИЧЕСКАЯ СВЯЗЬ»

ВАРИАНТ 1

 2. 3. 	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Mg$ в соединении гидроксида магния $Mg(OH)_2$ и определить: а)какая из связей $H-O$ или $O-Mg$ характеризуется большей степенью ионности; б) каков характер диссоциации гидроксида магния в водном растворе? Объяснить механизм образования молекулы Как изменяется прочность связи $H-B$ в ряду? Почему?
4.	Какая из молекул характеризуется более высокой энергией
5. 6.	диссоциации на атомы? Сопоставить магнитные свойства этих молекул. Описать с позиций метода BC электронное строение молекулы BF $_3$ и иона BF $_4$. Радиусы ионов Na $^+$ и Cu $^+$ одинаковы (0,098 нм). Объяснить различие температур
7.	плавления хлорида натрия (801 0 C) и хлорида меди (I) (430 0 C). Сероводород при обычной температуре — газ, а вода — жидкость. Объясните это различие в свойствах.
	ВАРИАНТ 2
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Ca$ в соединении гидроксида кальция $Ca(OH)_2$ и определить: а)какая из связей $H-O$ или $O-Ca$ характеризуется большей степенью ионности; б) каков характер диссоциации гидроксида кальция в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - 3$ в ряду? Почему?
4.	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул.
5.	Сравнить способы образования ковалентных связей в молекулах CH_4 , NH_3 , и в ионе NH_4^+ . Могут ли существовать ионы CH_5^+ и NH_5^{2+} ?
6.	Фторид кальция не диссоциирует на атомы даже при $1000~^{0}$ C, а иодид меди (II) неустойчив уже при обычной температуре. Чем объяснить различную прочность этих соединений?
BA	АРИАНТ 3
 2. 	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Sr$ в соединении гидроксида стронция $Sr(OH)_2$ и определить: а)какая из связей $H-O$ или $O-Sr$ характеризуется большей степенью ионности; б) каков характер диссоциации гидроксида стронция в водном растворе? Объяснить механизм образования молекулы

3.	Как изменяется прочность связи H – Э в ряду? Почему?
4.	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул.
5. 6.	Какой атом или ион служит донором электронной пары при образовании иона BH_4 -? Радиус иона Ca^{2+} равен 0,104 нм, иона Cd^{2+} - 0,099 нм. Объяснить различие температур плавления хлорида кальция (780 0 C) и хлорида кадмия (0,099 0 C).
BA	АРИАНТ 4
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Cl$ в соединении хлорноватистой кислоты $HClO$ и определить: а)какая из связей $H-O$ или $O-Cl$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы $HClO$ в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи Н – Э в ряду?
	Почему?
4.	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул.
5.	Описать с позиций метода BC способность оксидов NO и NO ₂ образовывать димерные
6.	молекулы. При переходе от CsF к CsI температура плавления кристаллов уменьшается. Объясните почему?
BA	АРИАНТ 5
1.	Вычислить разность относительных ЭО атомов для связей H – O и O – Br в соединении бромноватистой кислоты HBrO и определить: а)какая из связей H – O или O – Br характеризуется большей степенью ионности; б) каков характер диссоциации молекулы HBrO в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду? Почему?
4.	Какими магнитными свойствами обладает молекула О2. Объясните почему.
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с позиции теории МО ?
6.	Объясните неустойчивость гидроксидов меди (I) и серебра (I).
BA	АРИАНТ 6
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-I$ в соединении йодноватистой кислоты HIO и определить: а) какая из связей $H-O$ или $O-I$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы HIO в водном растворе? Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду?
э.	Почему?
4.	Какие из перечисленных частиц парамагнитны ?
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с
(позиции теории MO? Объясните с позиций представлений о поляризации ионов меньшую устойчивость PbCl ₄
6.	в сравнении с PbCl ₂ .

ВАРИАНТ 7

1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-I$ в соединении йодноватистой кислоты HIO и определить: а) какая из связей $H-O$ или $O-I$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы HIO в водном растворе? Объяснить механизм образования молекулы
 3. 	Ооъяснить механизм ооразования молекулы Как изменяется прочность связи H – Э в ряду ?
<i>J</i> .	Почему?
4.	Какие из перечисленных частиц парамагнитны ?
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с позиции теории МО?
6.	позиции теории MO ? K_2CO_3 плавится при $890~^0C$ без разложения, Ag_2CO_3 разлагается уже при $220~^0C$. Объясните указанное различие.
BA	АРИАНТ 8
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-As$. Определить: а) какая из связей $H-O$ или $O-As$ более полярна; б) каков характер диссоциации молекулы $As(OH)_3$ в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду? Почему?
4.	Какие из перечисленных частиц парамагнитны ?
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с позиции теории MO ?
6.	$BaCl_2$ в водных растворах диссоциирует полностью, а $HgCl_2$ почти не диссоциирует. Объясните это различие.
BA	АРИАНТ 9
1.	Вычислить разность относительных 90 для связей $K-Cl$, $Ca-Cl$, $Fe-Cl$, $Ge-Cl$. Какая из связей характеризуется большей степенью ионности? Объяснить механизм образования молекулы
 3. 	Как изменяется прочность связи Н – Э в ряду
J.	Почему?
4.	Какие из перечисленных частиц парамагнитны ?
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с позиции теории МО ?
6.	У какого из соединений SrF ₂ или PbF ₂ температура плавления выше? Объясните.
BA	АРИАНТ 10
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-I$ в соединении йодноватистой кислоты HIO и определить: а) какая из связей $H-O$ или $O-I$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы HIO в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду? Почему?
4.	Какие из перечисленных частиц парамагнитны ?

единении О — Мд социации ? энергией жмператур				
О – Му социации ? энергией мператур				
О – Му социации ? энергией мператур				
энергией 4 ⁷ . эмператур единении				
энергией 4 ⁷ . эмператур единении				
4 ⁻ . смператур единении				
емператур				
емператур				
социации				
?				
!				
энергией				
onepi nen				
и в ионе				
NH_4^+ . Могут ли существовать ионы CH_5^+ и NH_5^{2+} ? Фторид кальция не диссоциирует на атомы даже при $1000~^{0}$ C, а иодид меди (II) неустойчив уже при обычной температуре. Чем объяснить различную прочность этих соединений?				
единении О – М <u>е</u> социации				
?				
!				
энергией				
энергией				
I				

BA	АРИАНТ 14
 2. 	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Ca$ в соединении гидроксида кальция $Ca(OH)_2$ и определить: а)какая из связей $H-O$ или $O-Ca$ характеризуется большей степенью ионности; б) каков характер диссоциации гидроксида кальция в водном растворе? Объяснить механизм образования молекулы
3.	Как изменяется прочность связи Н – Э в ряду?
	Почему?
 4. 5. 	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул. Сравнить способы образования ковалентных связей в молекулах CH_4 , NH_3 , и в ионе NH_4^+ . Могут ли существовать ионы CH_5^+ и NH_5^{2+} ?
6.	Фторид кальция не диссоциирует на атомы даже при $1000~^{0}$ С, а иодид меди (II) неустойчив уже при обычной температуре. Чем объяснить различную прочность этих соединений?
BA	АРИАНТ 15
 2. 	гидроксида стронция $Sr(OH)_2$ и определить: а)какая из связей $H-O$ или $O-Sr$ характеризуется большей степенью ионности; б) каков характер диссоциации гидроксида стронция в водном растворе?
 3. 	Объяснить механизм образования молекулы Как изменяется прочность связи H – Э в ряду?
<i>J</i> .	Почему?
4.5.6.	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул. Какой атом или ион служит донором электронной пары при образовании иона BH_4 ? Радиус иона Ca^{2+} равен 0,104 нм, иона Cd^{2+} - 0,099 нм. Объяснить различие температур плавления хлорида кальция (780 0 C) и хлорида кадмия (0,099 0 C).
BA	АРИАНТ 16
1.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-Cl$ в соединении хлорноватистой кислоты $HClO$ и определить: а)какая из связей $H-O$ или $O-Cl$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы $HClO$ в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи H – Э в ряду? Почему?
4.	Какая из молекул характеризуется более высокой энергией диссоциации на атомы? Сопоставить магнитные свойства этих молекул.
5.	Описать с позиций метода ВС способность оксидов NO и NO ₂ образовывать димерные молекулы.
6.	При переходе от CsF к CsI температура плавления кристаллов уменьшается. Объясните почему?

7. Сероводород при обычной температуре – газ, а вода – жидкость. Объясните это различие в свойствах.

ВАРИАНТ 17

1.	Вычислить разность относительных 90 атомов для связей $H - O$ и $O - Br$ в соединении бромноватистой кислоты $HBrO$ и определить: а)какая из связей $H - O$ или $O - Br$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы $HBrO$ в водном растворе?
2.	Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду?
Э.	Почему?
4.	Какими магнитными свойствами обладает молекула О2. Объясните почему.
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с
٥.	позиции теории МО
6.	Объясните неустойчивость гидроксидов меди (I) и серебра (I).
0.	оовлените неуетой інвоств гидрокондов меди (т) и серсори (т).
BA	АРИАНТ 18
1. 2.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-I$ в соединении йодноватистой кислоты HIO и определить: а) какая из связей $H-O$ или $O-I$ характеризуется большей степенью ионности; б) каков характер диссоциации молекулы HIO в водном растворе? Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - Э$ в ряду ?
3.	Почему?
4.	Какие из перечисленных частиц парамагнитны?
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с
٥.	1.60
6.	позиции теории МО? Объясните с позиций представлений о поляризации ионов меньшую устойчивость PbCl ₄
٠.	в сравнении с PbCl ₂ .
B.A. 1. 2. 3. 4. 5.	Вычислить разность относительных ЭО атомов для связей Н – О и О – I в соединении йодноватистой кислоты НІО и определить: а) какая из связей Н – О или О – I характеризуется большей степенью ионности; б) каков характер диссоциации молекулы НІО в водном растворе? Объяснить механизм образования молекулы Как изменяется прочность связи Н – Э в ряду Почему? Какие из перечисленных частиц парамагнитны ?
٥.	
6.	позиции теории MO? K_2CO_3 плавится при 890 $^{\circ}C$ без разложения, Ag_2CO_3 разлагается уже при 220 $^{\circ}C$.
0.	Объясните указанное различие.
	o o bitemino pusiti ine.
BA	АРИАНТ 20
1. 2.	Вычислить разность относительных 90 атомов для связей $H-O$ и $O-As$. Определить: а) какая из связей $H-O$ или $O-As$ более полярна; б) каков характер диссоциации молекулы $As(OH)_3$ в водном растворе? Объяснить механизм образования молекулы
3.	Как изменяется прочность связи $H - \Im$ в ряду?
Э.	Почему?

4.	Какие из перечисленных частиц парамагнитны?						
5.	Какие из перечисленных частиц не могут существовать в устойчивом состоянии с						
	позиции теории МО?						
6.	BaCl ₂ в водных растворах диссоциирует полностью, а HgCl ₂ почти не диссоциирует.						
	Объясните это различие.						
	Общая характеристика элементов VA группы. Азот. Оксиды азота. Аммиак. Соли аммония						
	1. Com analysis of nonverse why positive not reconstructed.						
	1. Соль аммония образуется при взаимодействии: 1)Zn и HNO ₃ (оченьразб.); 2) NH ₃ и H ₂ O;						
	3) NH ₃ • H ₂ O и HNO ₃ ; 4) (NH ₄) ₂ CO ₃ и KOH(p-p).						
	3) 14113 · 1120 ii 111403, 4) (14114)2003 ii 14011(p-p).						
	2. Растения получают азот из почвы главным образом в виде:						
	1) NH ₄ ⁺ и NO ₃ ; 2) NH ₄ ⁺ и NO ₂ ⁻ ;						
	$3)N_2$ и NO_2^- ; $4)N_2$ и NO_3^-						
	2. Here was asserted as (20 °C) areas (11) nontrigues as						
	3 . При комнатной температуре (20 °C) оксид азота (II) реагирует с:						
	1) H ₂ O; 2) KOH (p-p); 3) O ₂ ; 4) HC1 (p-p).						
	4. В описании свойств аммиака верными являются характеристики:						
	1) без запаха;						
	2) его водный раствор окрашивает лакмус в синий цвет;						
	3) с кислотами реагирует по типу реакции соединения;						
	4) в реакциях с кислотами выступает в роли основания,						
	5 H C						
	5. Для лабораторного получения аммиака можно использовать:						
	1) нагревание нитрита аммония;						
	2) взаимодействие водных растворов нашатыря и гашеной извести;						
	3) нагревание карбоната аммония;						
	4) взаимодействие гидрокарбоната аммония и соляной кислоты.						
	6. Между собой реагируют:						
	1) водный раствор NH ₃ и CO ₂ ;						
	2) (NH ₄) ₂ CO ₃ и HNO ₃ ;						
	3) NH ₃ • H ₂ O и HC1;						
	4) NH ₄ HSO ₄ и H ₂ SO ₄ .						
	7. Аммиак, реагируя с соляной кислотой, выступает в роли:						
	1)кислоты;						
	2) основания;						
	3) акцептора протона;						
	4) донора электронной пары.						
	8 . В ряду элементов N — Р — Sb уменьшаются:						
	8. В ряду элементов N — Р — 50 уменьшаются. 1) радиус атома;						
	1) радиус атома; 2) электроотрицательность;						
	2) электроотрицательность, 3) окислительная способность простых веществ;						
	4) энергия связи Э — Н в соединениях ЭН ₃ .						
	1) Shepirin Constitution of the Coordination of the Constitution of the Coordination o						

9. В промышленности азот получают:

- 1) из воздуха;
- 2) нагреванием нитрита аммония;
- 3) кипячением водной смеси нашатыря и гашеной извести;
 - 4) из мочевины.
 - 10. Аммиак можно осушать с помощью:
 - 1) CaO (T);
- 2) H₂SO₄ (конц.);
- 3) SiO₂;
- 4) P₂O₅.

Вопрос	Ответ
1	1,3
2	1
3	3
4	2,3,4
5	2,3
6	1,2,3
7	2,3,4
8	2,3,4 2,3 1,2,3 2,3,4 2,3,4
9	1
10	1,3

Азотная кислота и её соли. Азотные удобрения

1. Газ,	относительная	плотность	которого п	ю неону	равна 2,3,	выделяется	при
взаимодейств	вии:						

- 1) Zn и H₂SO₄ (разб.);
- 2) Cu и HNO₃ (конц.);
- 3) Ag и HNO₃ (разб.);
- 4) S и HNO₃ (конц.).

2. В отличие от разбавленной соляной кислоты разбавленная азотная кислота реагирует с:

- 1) доломитом;
- 2) серебром;
- 3) гидроксидом натрия;
- 4) оксидом цинка.

3. Концентрированная азотная кислота **HE** реагирует, а концентрированная серная кислота — реагирует с:

- 1) A1 (20 °C); 2) KC1 (T);
- 3) NaNO₃ (T);
- 4) KHCO₃ (p-p).

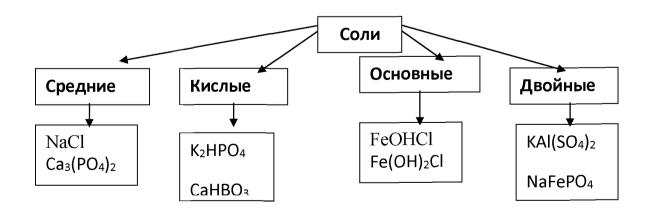
4. При взаимодействии цинка с раствором HNO₃ образуется только одна соль и только одно простое вещество. Укажите сумму коэффициентов в уравнении реакции:

- 1) 10;
- 2) 20; 3) 29;
- 4) 32.

5. При разбавлении степень восстановления азотной кислоты (т.е. число электронов, принятых молекулой кислоты):

- 1) увеличивается;
- 2) уменьшается;
- 3) не изменяется;
- 4) может как возрастать, так и уменьшаться.

6. Наиболее глубоко разбавленная азотная кислота восстанавливается, реагируя с:


- 1)Mg;
- 2)Cu;
- 3)Ag;
- 4)Hg.

- 7. Смесь бурого газа и кислорода образуется при нагревании:
- 1) KNO₃;
- 2) Cu(NO₂)₂; 3) AgNO₃;
- 4) NH₄NO₂.
- **8**. Концентрированная азотная кислота реагирует, а концентрированная соляная нет с:
 - 1)**P**;
- 2)Zn;
- 3)S;
- 4)Na₂SO₄.
- 9. С разбавленной азотной кислотой реагируют:
- 1) KC1;
- 2) NH₄HS;
- 3) K₂CO₃;
- 4) (NH₄)₂SO₄.
- 10. В реакциях Zn с HNO₃ различных концентраций можно получить:
- 1) NO₂;
- 2) NH₄NO₃;
- 3) Zn_3N_2 ;
- 4) N₂O.

Вопрос	Ответ
1	2,4
2	2
3	2,3
4	3
5	1
6	1
7	2,3
8	1,3
9	2,3 1,2,4
10	1,2,4

Соли

Соли – сложные вещества, при диссоциации которых в водном растворе образуются катионы металлов и анионы кислотных остатков. Соли это сложные вещества, в молекулах которых атомы металлов связаны с кислотным остатком.

Средние соли – продукт полного замещения атомов водорода кислот на атомы металла.

С точки зрения теории электрической диссоциации, средними солями называются соли, образующие при диссоциации в водном растворе катионы металла и анионы кислотного остатка. Кислые соли – продукт неполного замещения атомов водорода кислот на атомы метала. Кислые соли образуют только двухосновные и трехосновные кислоты, например:

С точки зрения теории электрической диссоциации, кислыми солями называются соли, которые в водном растворе диссоциируют ступенчато, т.е. по первой ступени диссоциация происходит по металлу, а вторая ступень по принципу диссоциации той кислоты, которая образует данный кислотный остаток.

Основные соли – продукт неполного замещения гидроксогрупп многокислотных оснований на кислотный остаток. Основные соли образуют только двух-и трехвалентные металлы, например:

С точки зрения теории электрической диссоциации, основными солями называются соли, которые в водном растворе диссоциируют ступенчато, т.е. по первой ступени диссоциация происходит по кислотному остатку, а вторая ступень по принципу диссоциации того основания, которое образует сложный катион данной соли.

Получение солей

а) Почти все металлы (кроме металлов, расположенных левее водорода в ряду напряжений металлов) реагируют с кислотами с образованием средних солей:

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2\uparrow$$

 $2K + H_2CO_3 \rightarrow K_2CO_3 + H_2\uparrow$
 $2Fe + 2H_3PO_4 \rightarrow 2FePO_4 + 3H_2\uparrow$

б) Оксиды многих металлов взаимодействуют с кислотами с образованием средних солей:

$$HgO + 2HC1 \rightarrow HgCl_2 + H_2O$$

 $Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$
 $Fe_2O_3 + 2H_3PO_4 \rightarrow FePO_4 + 3H_2O$

в) Основания взаимодействуют с кислотами (реакция нейтрализации) с образованием средних солей:

$$\begin{array}{lll} 2\text{LiOH} + \text{H}_2\text{SO}_3 & \rightarrow & \text{Li}_2\text{SO}_3 + 2\text{H}_2\text{O} \\ \text{Cr(OH)}_2 + \text{H}_2\text{SO}_4 & \rightarrow & \text{CrSO}_4 + 2\text{H}_2\text{O} \\ \text{Al(OH)}_3 + 3\text{HCl} & \rightarrow & \text{AlCl}_3 + 3\text{H}_2\text{O} \end{array}$$

г) При взаимодействии основных и амфотерных оксидов с кислотными оксидами образуются соли:

$$CaO + SO_2 \rightarrow CaSO_3$$

 $Al_2O_3 + P_2O_5 \rightarrow 2AlPO_4$
 $ZnO + N_2O_5 \rightarrow Zn(NO_3)_2$

д) При нагревании основные оксиды реагируют с амфотерными оксидами с образованием солей:

$$K_2O + Fe_2O_3 \rightarrow 2KFeO_2$$
 t^0
 $CaO + Cr_2O_3 \rightarrow Ca(CrO_2)_2$
 t^0
 $Na_2O + ZnO \rightarrow Na_2ZnO_2$

e) При нагревании основные оксиды реагируют с амфотерными гидроксидами с образованием средних солей:

$$K_2O + 2Al(OH)_3 \rightarrow 2KalO_2 + 3H_2O$$

 $Na_2O + Zn(OH)_2 \rightarrow Na_2ZnO_2 + H_2O$
 $CaO + 2Fe(OH)_3 \rightarrow Ca(FeO_2)_2 + 3H_2O$

ж) При нагревании щелочей с амфотерными оксидами образуются соли:

$$2KOH + Fe2O3 \rightarrow 2KFeO2 + H2Ot$$

$$2NaOH + Al2O3 \rightarrow 2NaAlO2 + H2Ot$$

$$Ca(OH)2 + Cr2O3 \rightarrow Ca(CrO2)2 + H2O$$

3) При нагревании щелочи также взаимодействуют с амфотерными гидроксидами с образованием солей:

$$KOH + Al(OH)_3 \longrightarrow KAlO_2 + 2H_2O$$

$$t^0$$

$$2NaOH + Be(OH)_2 \longrightarrow Na_2BeO_2 + 2H_2O$$

$$t^0$$

$$LiOH + Fe(OH)_3 \longrightarrow LiFeO_2 + 2H_2O$$

и) Оксиды амфотерных металлов при нагревании реагируют с карбонатами щелочных металлов с образованием новой соли и углекислого газа:

$$Fe_{2}O_{3} + Na_{2}CO_{3} \rightarrow 2NaFeO_{2} + CO_{2}\uparrow$$

$$Fe_{2}O_{3} + Na_{2}CO_{3} \rightarrow K_{2}BeO_{2} + CO_{2}\uparrow$$

$$Fe_{2}O_{3} + K_{2}CO_{3} \rightarrow K_{2}BeO_{2} + CO_{2}\uparrow$$

$$Fe_{2}O_{3} + K_{2}CO_{3} \rightarrow K_{2}BeO_{2} + CO_{2}\uparrow$$

$$Fe_{2}O_{3} + K_{2}CO_{3} \rightarrow 2LiAlO_{2} + CO_{2}\uparrow$$

 κ) некоторые соли можно получить реакцией ионного обмена между кислотами и солями:

$$2H_3PO_4 + 3CaCl_2 \rightarrow 6HCl + Ca_3(PO_4)_2\downarrow$$

 $3H_2SO_3 + 2FeBr_3 \rightarrow 6HBr + Fe_2(SO_3)_3\downarrow$
 $H_2CO_3 + MgSO_4 \rightarrow H_2SO_4 + MgCO_3\downarrow$

л) Амфотерные гидроксиды реагируют с кислотными оксидами с образованием соли и воды:

$$Zn(OH)_2 + SO_3 \rightarrow ZnSO_4 + H_2O$$

 $3Mn_2O_7 + 2Al(OH)_3 \rightarrow 2Al(MnO_4)_3 + 3H_2O$
 $2Fe(OH)_3 + 3CO_2 \rightarrow Fe_2(CO_3)_3 + 3H_2O$

м) Щелочи свободно реагируют с кислотными оксидами с образованием соли и воды:

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

 $3Ca(OH)_2 + P_2O_5 \rightarrow Ca_3(PO_4)_2 + 3H_2O$
 $2KOH + N_2O_5 \rightarrow 2KNO_3 + H_2O$

н) Реакцией ионного обмена между некоторыми солями и основаниями можно получить новую соль:

$$2K_3PO_4 + 3Ca(OH)_2 \rightarrow 6KOH + Ca_3(PO_4)_2\downarrow$$

 $CaSO_4 + Ba(OH)_2 \rightarrow Ca(OH)_2 + BaSO_4\downarrow$
 $NaCl + AgOH \rightarrow NaOH + AgCl\downarrow$

о) Соли аммония можно получить реакцией обмена между некоторыми солями и гидроксидом аммония:

FeCl₃ + 3NH₄OH
$$\rightarrow$$
 Fe(OH)₃\psi + 3NH₄Cl
Mg(NO₃)₂ + 2NH₄OH \rightarrow Mg(OH)₂\psi + 2NH₄NO₃
ZnSO₄ + 2NH₄OH \rightarrow Zn(OH)₂\psi + (NH₄)₂ SO₄

п) Многие кислоты реагируют с гидроксидом аммония с образованием соли и воды:

$$HCl + NH_4OH \rightarrow NH_4Cl + H_2O$$

 $HNO_3 + NH_4OH \rightarrow NH_4NO_3 + H_2O$
 $H_2SO_4 + 2NH_4OH \rightarrow (NH_4)_2 SO_4 + 2H_2O$

р) Растворы некоторых солей обмениваются своими составными частями с образованием новых солей:

$$MgSO_4 + BaCl_2 \Leftrightarrow MgCl_2 + BaSO_4 \downarrow$$

 $Al J_3 + K_3PO_4 \Leftrightarrow 3KJ + AlPO_4 \downarrow$
 $CoBr_2 + Na_2S \Leftrightarrow 2NaBr + CoS \downarrow$

е) Кислые соли можно получить реакциями, некоторые из них приведены ниже:

```
\begin{array}{llll} CaCO_3 + H_2CO_3 & \Leftrightarrow & Ca \ (HCO_3)_2 \\ KClO_4 + H_2SO_4 & \Leftrightarrow & KHSO_4 + HClO_4 \\ KNO_3 + H_2SO_4 & \Leftrightarrow & KHSO_4 + HNO_3 \\ NaOH + H_2SO_4 & \Leftrightarrow & NaHSO_4 + H_2O \\ Ca(OH)_2 + 2CO_2 & \Leftrightarrow & Ca(HCO_3)_2 \\ 2NaOH + H_3PO_4 & \Leftrightarrow & Na_2HPO_4 + 2H_2O \\ Ca(OH)_2 + H_3PO_4 & \Leftrightarrow & Ca(H_2PO_4)_2 + 2H_2O \\ Ca(OH)_2 + 2H_3PO_4 & \Leftrightarrow & Ca(H_2PO_4)_2 + 2H_2O \\ NaOH + H_3PO_4 & \Leftrightarrow & NaH_2PO_4 + H_2O \\ Na[Al(OH)_4] + CO_2 & \Leftrightarrow & Al(OH)_3 \downarrow + NaHCO_3 \\ Ca_3(PO_4)_2 + 4H_3PO_4 & \Leftrightarrow & 3Ca(H_2PO_4)_2 \end{array}
```

т) Основные соли можно получить следующими реакциями:

```
\begin{array}{lll} AlCl_3 + 2NaOH &\Leftrightarrow & Al(OH)_2Cl + 2NaCl \\ 2MgCl_2 + 2Na_2CO_3 + H_2O &\Leftrightarrow & [Mg(OH)]_2 CO_3 \downarrow & + CO_2 + 4NaCl \\ Fe(NO_3)_3 + H_2O &\Leftrightarrow & FeOH(NO_3)_2 + HNO_3 \\ 2ZnSO_4 + K_2CO_3 + 4H_2O &\Leftrightarrow & [Zn(OH)]_2CO_3 + 2KOH + 2H_2SO_4 \\ 2CuSO_4 + Na_2CO_3 + 4H_2O &\Leftrightarrow & [Cu(OH)]_2CO_3 + 2NaOH + 2H_2SO_4 \\ Al_2(SO_4)_3 + Na_2CO_3 + 6H_2O &\Leftrightarrow & [Al(OH)_2]_2CO_3 + 2NaOH + 3H_2SO_4 \\ Cr_2(SO_4)_3 + (NH_4)_2S + 6H_2O &\Leftrightarrow & [Cr(OH)_2]_2S + 2NH_4OH + 3H_2SO_4 \\ 2AlCl_3 + (NH_4)_2S + 6H_2O &\Leftrightarrow & [Al(OH)_2]_2S + 2NH_4OH + 6HCl \\ 2FeCl_3 + (NH_4)_2CO_3 + 6H_2O &\Leftrightarrow & [Fe(OH)_2]_2 CO_3 + 2NH_4OH + 6HCl \\ 2ZnCl_2 + Na_2CO_3 + 4H_2O &\Leftrightarrow & [Zn(OH)]_2CO_3 + 2NaOH + 4HCl \\ 2Zn(NO_3)_2 + K_2S + 4H_2O &\Leftrightarrow & [Zn(OH)]_2S + 2KOH + 4HNO_3 \\ \end{array}
```

Химические свойства солей

а) При нагревании многие соли разлагаются, такой процесс называется термическим разложением:

$$CaCO_{3} \Leftrightarrow CaO + CO_{2}\uparrow$$

$$t^{0}$$

$$NH_{4}Cl \Leftrightarrow NH_{3}\uparrow + HCl\uparrow$$

$$t^{o}$$

$$2Cu(NO_{3})_{2} \Leftrightarrow 2CuO + 4NO_{2}\uparrow + O_{2}\uparrow$$

б) При взаимодействии с кислотами происходит обмен составными частями, где образуется новая соль и новая кислота:

$$\begin{array}{lll} Mg(NO_3)_2 + H_2S & \Leftrightarrow & 2HNO_3 + MgS \downarrow \\ Al_2(SO_4)_3 + 2H_3PO_4 & \Leftrightarrow & 3H_2SO_4 + 2AlPO_4 \\ CaCl_2 + H_2CO_3 & \Leftrightarrow & 2HCl + CaCO_3 \downarrow \end{array}$$

в) При взаимодействии с основаниями образуется новая соль и новое основание:

$$Fe_2(SO_4)_3 + 3Ba(OH)_2 \Leftrightarrow 2Fe(OH)_3\downarrow + 3BaSO_4\downarrow$$

 $MgCO_3 + 2KOH \Leftrightarrow Mg(OH)_2\downarrow + K_2CO_3$
 $AlPO_4 + 3NaOH \Leftrightarrow Al(OH)_3\downarrow + Na_3PO_4$

г) Растворы солей реагируют с растворами других солей, обмениваясь своими составными частицами с образованием новых солей:

$$CaCl_2 + Na_2CO_3 \Leftrightarrow 2NaCl + CaCO_3 \downarrow$$

 $3Mg(NO_3)_2 + 2K_3PO_4 \Leftrightarrow Mg_3(PO_4)_2 \downarrow + 6KNO_3$
 $Fe_2(SO_4)_3 + 3BaCl_2 \Leftrightarrow 2FeCl_3 + 3BaSO_4 \downarrow$

- д) Некоторые соли подвергаются гидролизу, где обязательным условием является образование слабого электролита
 - 1) Гидролиз солей, образованных сильной кислотой и слабым основанием:

FeCl₃ + HOH
$$\Leftrightarrow$$
 HCl + FeOHCl₂ 1 – ступень
FeOHCl₂ + HOH \Leftrightarrow HCl + Fe (OH)₂Cl 2 – ступень
Fe(OH)₂Cl + HOH \Leftrightarrow HCl + Fe(OH)₃ \downarrow 3 – ступень

2)Гидролиз солей, образованных слабой кислотой и сильным основанием:

$$K_2CO_3 + HOH \Leftrightarrow KOH + KHCO_3 1 - ступень$$
 $KHCO_3 + HOH \Leftrightarrow KOH + H_2CO_3 2 - ступень$

3) Гидролиз солей, образованных слабой кислотой и слабым основанием:

$$Al_2S_3 + 6 \text{ HOH} \Leftrightarrow 2Al(OH)_3 \downarrow +3H_2S\uparrow$$

е) Более активные металлы вступают в реакцию замещения с солями, вытесняя менее активный металл с образованием новой соли:

$$Fe(NO_3)_2 + 2K \Leftrightarrow 2KNO_3 \downarrow + Fe$$

$$AlCl_3 + 3Na \Leftrightarrow 3NaCl + Al$$

$$ZnSO_4 + Mg \Leftrightarrow MgSO_4 \downarrow + Zn$$

ж) Карбонаты щелочных металлов реагируют с оксидами амфотерных металлов с образованием новых солей:

$$Al_2O_3 + Na_2CO_3 \Leftrightarrow 2NaAlO_2 + CO_2 \uparrow Cr_2O_3 + Na_2CO_3 \Leftrightarrow 2NaCrO_2 + CO_2 \uparrow Fe_2O_3 + K_2CO_3 \Leftrightarrow 2KFeO_2 + CO_2 \uparrow$$

Для закрепления материала рассмотрим ряд примеров решения задач по изученной теме "Основные классы неорганических соединений".

Соли

1. Даны химические формулы веществ: HBr, NaHSO₄, Cu₂O, Fe(OH)₃, Fe(NO₃)₃, Ca(HCO₃)₂, N₂O₅, H₃BO₃, Li₂O, SO₂, Ba(OH)₂, Ca₃(PO₄)₂, Cu(OH)₂. Начертите в тетрадях таблицу и разместите формулы по соотвествующим графам.

Ответ:

Оксиды		Основания		Кислот	Соли	
				Ы		
Основные	Кислотные	Растворимы е	Нерастворимые		Средние	Кислые

Оксиды		Оксиды Основания		Кислоты	C	оли
Основные	Кислотные	Раствори	Нераствор		Средние	Кислые
		мые	имые			
Cu ₂ O	N ₂ O ₅	Ba(OH) ₂	Fe(OH) ₃	HBr	Fe(NO ₃) ₃	NaHSO ₄
Li ₂ O	SO ₂		Cu(OH) ₂	H ₃ BO ₃	Ca ₃ (PO ₄)	Ca(HCO ₃)
					2	2

2. Напишите химические формулы следующих солей: карбоната натрия, гидрокарбоната железа (II), сульфата железа (III), гидроортофосфата кальция, основного хлорида магния, дигидроортофосфата кальция.

Ответ:

Карбонат натрия Na_2CO_3 , гидрокорбонат железа (II) — $Fe(HCO_3)_2$, сульфат железа (III) — $Fe_2(SO_4)_3$, гидроортофосфат кальция — $CaHPO_4$, основной хлорид магния — MgOHCl, дигидроортофосфат кальция — $Ca(H_2PO_4)_2$.

3. Напишите названия солей, формулы которых даны: NaCl, NaNO₃, CaCl₂, KHSO₄, Al(NO₃)₃, K₃PO₄, Na₂SO₄, Na₂SO₃, Ca(HS)₂, FeSO₄, AgNO₃, Fe₂(SO₄)₃, Na₂CO₃, Cr₂(SO₄)₃, NaHCO₃, Ca(HCO₃)₂.

Ответ:

NaCl — хлорид натрия, NaNO₃ — нитрат натрия, CaCl — хлорид кальция, KHSO₄ — гидросульфат калия, Al(NO₃)₃ — нитрат алюминия, K₃PO₄ — ортофосфат калия, Na₂SO₄ — сульфат натрия, Na₂S - сульфид натрия, Na₂SO₃ — сульфит натрия, Ca(HS)₂ — гидросульфид кальция, FeSO₄ — сульфат железа (II), AgNO₃ — нитрат серебра, Fe₂(SO₄)₃ — сульфат железа (III), Na₂CO₃ — карбонат натрия, Cr₂(SO₄)₃ — сульфат хрома (III), NaHCO₃ — гидрокорбонат натрия, Ca(HCO₃)₂ — гидрокорбонат кальция.

4. Напишите формулы важнейших солей следующих кислот: а) соляной, б) серной, в) азотной, г) ортофосфорной, д) угольной. Назоваите эти соли.

Ответ:

- а) HCl хлорид натрия (поваренная соль)
- б) CuSO₄ · 5H₂O пентагидрат сульфата меди (медный купарос), средство защиты растений от вредителей;

CaSO₄ · 2H₂O -дигидрат сульфата кальция (гипс), строительный материал

- в) NH₄NO₃ нитрат аммония (аммиачная селитра), удобрения.
- Γ) $Ca_3(PO_4)_2$ ортофосфат кальция образует скелет позвоночника
- д) NaHCO₃ гидрокарбонат натрия (сода),

Na₂CO₃ – карбонат натрия (кальцинированная сода).

Na₂CO₃ · 10H₂O – декагидрат карбоната натрия (кристаллическая сода).

СаСО₃ – карбонат кальция (мел, известняк, мрамор).

5. Перечилите способы получения солей и напишите по два уравнения соответствующих химичекских реакций.

<u>Ответ :</u>

1) Рекции кислот с металлами, основными оксидами и основаниями:

$$Mg + H_2SO_4 = MgSO_4 + H_2\uparrow$$

 $Ag_2O + 2HNO_3 = 2AgNO_3 + H_2O$
 $Cu(OH)_2 + 2HCl = CuCl_2 + 2H_2O$

2) Реакция кислотных оксидов с основаниями и основными оксидами:

$$2KOH + SO2 = K2SO3 + H2O$$
$$CaO + SO3 = CaSO4$$

3) Обменные рекции:

$$BaCl_2 + MgSO_4 = MgCl_2 + BaSO_4 \downarrow$$

$$HC1 + AgNO_3 = AgC1 \downarrow + HNO_3$$

1) Реакции между металлами и неметаллами:

$$2Fe + 3Cl_2 = 2FeCl_3$$

 $Hg + S = HgS$

б) Составьте уравнения химических реакций, схемы которых даны ниже:

$$\frac{OTBET:}{Ca + H_2SO_4 = CaSO_4 + H_2 \uparrow}$$

$$N_2O_5 + CaO = Ca(NO_3)_2$$

$$Ca(OH)_2 + H_2SO_4 = CaSO_4 + 2H_2O$$

$$SO_3 + CaO = CaSO_4$$

$$CaO + SO_2 = CaSO_3$$

$$P_2O_5 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 3H_2O$$

6) С какими веществами реагирует хлорид кальция, если получается: а) сульфат кальция, б) карбонат кальция, в) ортофосфат кальция, г) гидроксид кальция, д) хлороводород? Напишите уравнения реакций и поясните, почему они идут до конца.

Ответ:
a)
$$CaCl_2 + Na_2SO_4 = CaSO_4 \downarrow + 2NaCl$$

б) $CaCl_2 + Na_2CO_3 = CaCO_3 \downarrow + 2NaCl$
в) $3CaCl_2 + 2Na_3PO_4 = Ca_3(PO_4)_2 \downarrow + 6NaCl$
г) $CaCl_2 + 2H_2O = Ca(OH)_2 \downarrow + H_2 \uparrow + Cl_2 \uparrow$
д) $CaCl_2 + H_2SO_{4(KOHIL.)} = CaSO_4 + 2HCl \uparrow$

Реакции а) - в) идут до конца, потому что образуют осадок. Реакция г) идет при электролизе водного раствора CaCl₂ с образованием двух газов. Последняя реакция идет до образования хлороводорода при нагревании твердого хлорида кальция с концентрированной серной кислотой.

2) Какими двумя способами из оксида кальция можно получить: а) сульфат кальция, б) ортофосфат кальция? Составьте уравнения реакции.

a)
$$CaO + SO_3 = CaSO_4$$

 $CaO + H_2SO_4 = CaSO_4 + H_2O$
6) $3CaO + P_2O_5 = Ca_3(PO_4)_2$
 $3CaO + 2H_3PO_4 = Ca_3(PO_4)_2 + 3H_2O$

3) Напишите уравнения реакций нейтрализации, в результате которых образуются соли, формулы которых следующие: а) AlCl₃, б) BaSO₄, в) Ba(NO₃)₂, г) NaNO₃, д) Na₃PO₄, е) NaHSO₄, ж) KH₂PO₄, 3) K₂HPO₄.

Ответ:

8. Составьте уравнения реакций, схемы которых даны ниже:

а)
$$Ca \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow Ca(NO_3)_2 \rightarrow CaSO_4$$

б) $Al_2O_3 \rightarrow Al_2(SO_4)_3 \rightarrow Al(OH)_3 \rightarrow Al_2O_3$
в) $CaCO_3 \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3 \rightarrow Ca(NO_3)_2$
г) $Cu \rightarrow CuO \rightarrow CuCl_2 \rightarrow Cu(OH)_2 \rightarrow CuO \rightarrow Cu \rightarrow CuSO_4 \rightarrow Cu(OH)_2$
д) $Mg \rightarrow MgO \rightarrow Mg(OH)_2 \rightarrow MgSO_4$
е) $C \rightarrow CO_2 \rightarrow Na_2CO_3 \rightarrow CO_2 \rightarrow CaCO_3$
ж) $Fe_2(SO_4)_3 \rightarrow Fe(OH)_3 \rightarrow Fe_2O_3 \rightarrow Fe_2(SO_4)_3$
3) $P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ca_3(PO_4)_2 \rightarrow H_3PO_4 \rightarrow Ca(H_2PO_4)_2$
и) $Al_2(SO_4)_3 \rightarrow Al(OH)_3 \rightarrow Al_2O_3 \rightarrow AlCl_3 \rightarrow Al(OH)_3 \rightarrow Al(OH)_2Cl$
к) $SO_3 \rightarrow ZnSO_4 \rightarrow Zn(OH)_2 \rightarrow ZnO$

Ответ:

a)
$$2Ca + O_2 = 2CaO$$

 $CaO + H_2O = Ca(OH)_2$
 $Ca(OH)_2 + 2HNO_3 = Ca(NO_3)_2 + 2H_2O$
 $Ca(NO_3)_2 + ZnSO_4 = CaSO_4 \downarrow + Zn(NO_3)_2$

$$\begin{array}{c} 6)Al_2O_3 + 3H_2SO_4 = Al_2(SO_4)_3 + 3H_2O \\ Al_2(SO_4)_3 + 6KOH = 2Al(OH)_3 \downarrow & + 3K_2SO_4 \\ 2Al(OH)_3 \downarrow & = A_2O_3 + 3H_2O \end{array}$$

$$B)CaCO_{3} = CaO + CO_{2}$$

$$CaO + H_{2}O = Ca(OH)_{2}$$

$$Ca(OH)_{2} + CO_{2} = CaCO_{3} \downarrow + H_{2}O$$

$$CaCO_{3} + 2HNO_{3} = Ca(NO_{3})_{2} + CO_{2} \uparrow + H_{2}O$$

$$\begin{array}{c} \text{r) } 2\text{Cu} + \text{O}_2 = 2\text{CuO} \\ \text{CuO} + 2\text{HCl} = \text{CuCl}_2 + \text{H}_2\text{O} \\ \text{CuCl}_2 + 2\text{KOH} = \text{Cu(OH)}_2 \downarrow & + 2\text{KCl} \\ & \text{Cu(OH)}_2 = \text{CuO} + \text{H}_2\text{O} \\ & \text{CuO} + \text{H}_2 = \text{Cu} + \text{H}_2\text{O} \\ \text{CuO} + \text{H}_2 = \text{Cu} + \text{H}_2\text{O} \\ \text{CuSO}_4 + 2\text{NaOH} = \text{Cu(OH)}_2 \downarrow & + \text{Na}_2\text{SO}_4 \end{array}$$

$$\pi$$
) $2Mg + O_2 = 2MgO$
 $MgO + H_2O = 2Mg(OH)_2$
 $Mg(OH)_2 + H_2SO_4 = MgSO_4 + 2H_2O$

e)
$$C + O_2 = CO_2$$

$$CO_2 + 2NaOH = Na_2CO_3 + H_2O$$

 $Na_2CO_3 + 2HCl = 2NaCl + CO_2 \uparrow + H_2O$
 $CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O$

ж)
$$Fe_2(SO_4)_3 + 6KOH = 2Fe(OH)_3 + 3K_2SO_4$$

 t^0
 $2Fe(OH)_3 = Fe_2O_3 + 3H_2O$
 $Fe_2O_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 3H_2O$

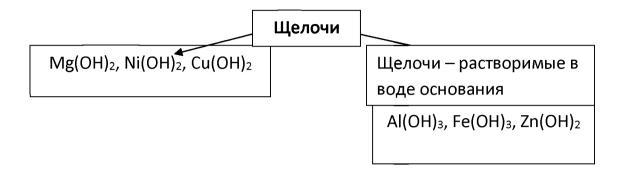
3)
$$4P + 5O_2 = 2P_2O_5$$

 $P_2O_5 + 3H_2O = 2H_3PO_4$
 $2H_3PO_4 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 6H_2O$
 $Ca_3(PO_4)_2 + 6HCl = 3CaCl_2 + 2H_3PO_4$
 $2H_3PO_4 + Ca(OH)_2 = Ca(H_2PO_4)_2 + 2H_2O$

и)
$$Al_2(SO_4)_3 + 6KOH = 2Al(OH)_3 \downarrow + 3K_2SO_4$$

 $2Al(OH)_3 = Al_2O_3 + 3H_2O$
 $Al_2O_3 + 6HCl = 2AlCl_3 + 3H_2O$
 $AlCl_3 + 3NaOH = Al(OH)_3 \downarrow + 3NaCl$
 $Al(OH)_3 + HCl = Al(OH)_2Cl + H_2O$

$$κ)$$
 SO₃ + ZnO = ZnSO₄
ZnSO₄ + 2KOH = Zn(OH)₂↓ + K₂SO₄
 t^0
Zn(OH)₂ = ZnO + H₂O


$$\begin{array}{c} 1. \ 2K + S \ \rightarrow \ K_2S \\ 2. \ 4K + O_2 \ \rightarrow \ 2K_2O \\ 3. \ K_2O + SO_2 \ \rightarrow \ K_2SO_3 \\ 4. \ K_2O + H_2O \ \rightarrow \ 2KOH \\ 5. \ 2KOH + H_2SO_3 \ \rightarrow \ K_2SO_3 + 2H_2O \\ 6. \ K_2S \ \rightarrow \ 2K + S \\ 7. \ S + O_2 \ \rightarrow \ SO_2 \\ 8. \ SO_2 + H_2O \ \rightarrow \ H_2SO_3 \\ 9. \ K_2SO_3 \ \rightarrow \ K_2O + SO_2 \\ 10. \ SO_2 + H_2O \ \rightarrow \ H_2SO_3 \end{array}$$

Основания (гидроксиды металлов)

11. $K_2SO_4 + 2H_2O \rightarrow 2KOH + H_2SO_4$

Основания – сложные вещества, при диссоциации которых в водном растворе образуются ионы металлов (аммония) и гидроксид-ионы ОН. К неорганическим основаниям относятся гидроксиды металлов и аммиака.

Получение щелочей

а) Щелочи в технике обычно получают электролизом водных растворов хлоридов:

$$2NaCl + 2H_2O \ \rightarrow \ 2NaOH + H_2 \uparrow + Cl_2 \uparrow$$

$$2KC1 + 2H_2O \rightarrow 2KOH + H_2\uparrow + Cl_2\uparrow$$

б) Реакцией обмена между некоторыми солями и основаниями образуются щелочи:

$$K_2CO_3 + Ba(OH)_2 \rightarrow 2KOH + BaCO_3$$

 $NaCl + AgOH \rightarrow NaOH + AgCl \downarrow$

в) Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов с водой:

$$Na + 2H_2O \rightarrow 2NaOH + H_2\uparrow$$

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2\uparrow$$

г) Также щелочи могут быть получены взаимодействием оксидов щелочных и щелочноземельных металлов с водой:

$$K_2O + H_2O \rightarrow 2KOH$$

$$BaO + H_2O \rightarrow Ba(OH)_2$$

$$SrO + H_2O \rightarrow Sr(OH)_2$$

Химические свойства щелочей

а) Реакция нейтрализации, т.е. реакция обмена между щелочами и кислотами:

$$2KOH + H_2CO_3 \rightarrow K_2CO_3 + 2H_2O$$

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O
 $3Ca(OH)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6H_2O$

б) Взаимодействие щелочей с кислотными оксидами с образованием соли и воды:

$$2NaOH + SO_2 \ \rightarrow \ Na_2SO_3 + H_2O$$

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

$$Ba(OH)_2 + SO_3 \rightarrow BaSO_4 + H_2O$$

в) Щелочи реагируют с амфотерными оксидами с образованием соли и воды:

$$2KOH + Al_2O_3 \rightarrow 2KaAl O_2 + H_2O$$
 или

$$KOH + 3H_2O + Al_2O_3 \rightarrow 2K[Al(OH)_4]$$

$$2NaOH + Fe_2O_3 \rightarrow 2NaFeO_2 + H_2O$$
 или

$$2NaOH + 3H_2O + Fe_2O_3 \rightarrow 2Na[Fe(OH)_4]$$

$$2NaOH + ZnO \rightarrow Na_2ZnO_2 + H_2O$$
 или

$$2NaOH + ZnO + H_2O \rightarrow Na_2[Zn(OH)_4]$$

г) При взаимодействии с амфотерными гидроксидами также образуются соль и вода:

$$2NaOH + Zn(OH)_2 \rightarrow Na_2[Zn(OH)_4]$$
 или

$$2NaOH + Zn(OH)_2 \rightarrow Na_2ZnO_2 + 2H_2O$$

$$NaOH + Al(OH)_3 \rightarrow NaAlO_2 + 2H_2O$$
 или

$$3NaOH + Al(OH)_3 \rightarrow Na_3[Al(OH)_6]$$

$$KOH + Fe(OH)_3 \rightarrow KFeO_2 + 2H_2O$$
 или

$$3KOH + Fe(OH)_3 \rightarrow K_3[Fe(OH)_6]$$

д) Растворы щелочей реагируют с некоторыми неметаллами:

$$2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$$
 (на холоде)

$$6$$
KOH + 3 Cl₂ \rightarrow 5KCl + KClO₃ + 3 H₂O (при нагревании)

$$2NaOH + Si + H_2O \rightarrow Na_2SiO_3 + 2H_2\uparrow$$

е) Щелочи вступают в реакцию обмена с некоторыми солями:

$$FeSO_4 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + Na_2SO_4$$

$$2\text{LiOH} + \text{MgCl}_2 \rightarrow 2\text{LiCl} + \text{Mg(OH)}_2 \downarrow$$

$$6KOH + Al_2(SO_4)_3 \rightarrow 3K_2SO_4 + 2Al(OH)_3 \downarrow$$

Амфотерные гидроксиды Получение

а) общим методом получения нерастворимых оснований является реакция обмена:

$$Al_2(SO_4)_3 + 6KOH \rightarrow 2Al(OH)_3 \downarrow + 3K_2SO_4$$

 $FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$
 $Cr_2(SO_4)_3 + 6NaOH \rightarrow 2Cr(OH)_3 \downarrow +3Na_2SO_4$

б) На воздухе некоторые амфотерные металлы окисляются, особенно в присутствии влаги:

$$4\text{Fe} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3\downarrow$$

 $2\text{Zn} + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Zn} (\text{OH})_2\downarrow$

в) При гидролизе солей, образованных сильной кислотой и слабым амфотерным основанием, образуются амфотерные гидроксиды:

AlCl₃ + HOH
$$\rightarrow$$
 HCl + AlOHCl₂
AlOHCl₂ + HOH \Leftrightarrow HCl + Al(OH)₂Cl
Al(OH)₂Cl + HOH \Leftrightarrow HCl + Al(OH)₃↓
Fe(NO₃)₂ + HOH \Leftrightarrow HNO₃ + FeOHNO₃
FeOHNO₃ + HOH \Leftrightarrow HNO₃ + Fe(OH)₂↓

г) Растворимые соли амфотерных металлов, взаимодействуя с гидроксидом аммония, образуют амфотерные гидроксиды:

$$CrBr_3 + 3NH_4OH \Leftrightarrow 3NH_4Br + Cr(OH)_3\downarrow$$

$$ZnF_2 + 2NH_4OH \Leftrightarrow 2NH_4F + Zn(OH)_2\downarrow$$

$$Al(NO_3)_3 + 3NH_4OH \Leftrightarrow 3NH_4NO_3 + Al(OH)_3\downarrow$$

Химические свойства амфотерных гидроксидов

а) При прокаливании амфотерных гидроксидов происходит их разложение на оксид

воду:
$$t^0$$

 $2Cr(OH)_3 \rightarrow Cr_2O_3 + 3H_2O$
 $2Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O$
 t^0
 $Zn(OH)_2 \rightarrow ZnO + H_2O$

И

б) амфотерные гидроксиды способны растворяться как в кислотах с образованием солей:

$$2Cr(OH)_2 + 3H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 6H_2O$$

 $Al(OH)_3 + 3HC1 \rightarrow AlCl_3 + 3H_2O$
 $Zn(OH)_2 + 2HNO_3 \rightarrow Zn(NO_3)_2 + 2H_2O$
 $Fe(OH)_3 + H_3PO_4 \rightarrow FePO_4 + 3H_2O$

так и в щелочах с образованием солей, в которых амфотерный металл входит в состав аниона

$$Cr(OH)_3 + KOH \rightarrow K[Cr(OH)_4]$$

 $Al(OH)_3 + NaOH \rightarrow Na[Al(OH)_4]$
 $Zn(OH)_2 + 2LiOH \rightarrow Li_2[Zn(OH)_4]$
 $Fe(OH)_3 + 3KOH \rightarrow K_3[Fe(OH)_6]$

в) Амфотерные гидроксиды при нагревании реагируют как с кислотными оксидами с образованием солей:

$$2Cr (OH)_3 + 3SO_3 \rightarrow Cr_2(SO_4)_3 + 3H_2O$$

 $2Al (OH)_3 + 3N_2O_5 \rightarrow 2Al(NO_3)_3 + 3H_2O$
 $Zn(OH)_2 + SO_3 \rightarrow ZnSO_4 + H_2O$

так и с основными оксидами с образованием солей, в которых амфотерный металл входит в состав аниона:

$$2Cr(OH)_3 + K_2O \rightarrow 2KCrO_2 + 3H_2O$$

$$2Fe(OH)_3 + Na_2O \rightarrow 2NaFeO_2 + 3H_2O$$

$$Zn(OH)_2 + K_2O \rightarrow K_2ZnO_2 + H_2O$$

Основания

1. Заполните таблицу, записав в ней по 2-3 формулы веществ, относящихся к каждому классу веществ.

Простые вещества			Сложные	вещества	_
Металлы	Неметаллы	Оксиды	Основания	Кислоты	Соли

Ответ:

Простые вещества		Сложные вещества			
Металлы	Неметаллы	Оксиды	Основания	Кислоты	Соли
Na	O_2	K ₂ O	LiOH	HC1	NaBr
Ca	Cl_2	FeO	Cu(OH) ₂	H ₂ SO ₄	CuSO ₄
Al	S	Cr ₂ O ₃	Fe(OH) ₃	H ₃ PO ₄	$Ca_3(PO_4)_2$

2. Какие вещества называют основаниями и как их классифицируют? Напишите формулы оснований и назовите их.

Ответ:

Основания — это вещества, в состав которых входят атомы металла, соединенные с гидроксогруппами. С точки зрения теории электрической диссоциации основания — это вещества, которые в водном растворе диссоциируют на ионы металла (или аммония) и гидроксид ионы ОН.

Основания делятся на растворимые, или щелочные (NaOH – гидроксид натрия, $Ba(OH)_2$ – гидроксид бария) и нерастворимые (Cu(OH) $_2$ – гидроксид меди (II), Fe(OH) $_3$ – гидроксид железа (III).

- 3. Приведите по три уравнения реакций, при помощи которых можно получить:
- а) растворимые и б) практически нерастворимые основания. Напишите их названия.

Ответ:

а) 1) Реакция оксидов с
$$H_2O$$
 $Na_2O + H_2O = 2NaOH$ гидроксид натрия

2) Электролиз растворов хлоридов
$$2KCl + 2H_2O = 2KOH + H_2↑ + Cl_2↑$$
 гидроксид калия

3) Реакция щелочных и щелочно – земельных металлов с H_2O $Ca + 2H_2O = Ca(OH)_2 + H_2\uparrow$

гидроксид кальция

б) 1) Обменная реакция соли металла с щелочью:

$$FeCl_3 + 3NaOH = Fe(OH)_3 + 3NaCl$$
 гидроксид железа (III)

2) реакция некоторых металлов с водой:

$$2A1 + 6H_2O = 2AI(OH)_3 \downarrow + 3H_2 \uparrow$$
 гидроксид аллюминия

3) Полный гидролиз некоторых солей:

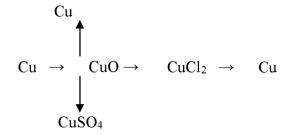
$$Al_2S_3 + 6H_2O = 2Al(OH)_3\downarrow + 3H_2S$$
 гидроксид аллюминия

- 4. Составьте по три уравнения, характеризующих химические свойства щелочей. Ответ:
 - 1) Реакции с кислотами. 2Na OH + H_2 SO₄ = Na_2 SO₄ + $2H_2$ O $Ba(OH)_2 + 2HCl = BaCl_2 + 2H_2$ O $Ca(OH)_2 + 2HNO_3 = Ca(NO_3)_2 + 2H_2$ O

2) Реакции с солями:
$$2NaOH + CuSO_4 = Na_2SO_4 + Cu(OH)_2 \downarrow$$
 $Ba(OH)_2 + MgSO_4 = BaSO_4 \downarrow + Mg(OH)_2 \downarrow$ $3KOH + Fe(NO_3)_3 = 3KNO_3 + Fe(OH)_3 \downarrow$

5. Какие из веществ, формулы которых приведены, реагируют с раствором гидроксида натрия: CaO, Cu (OH)₂, H₂SO₄, CO₂, CuSO₄, KCl, CuO, HCl ? Напишите уравнения практически осуществимых реакций.

Ответ:


С раствором NaOH реагируют кислоты, кислотные оксиды и соли (в тех случаях, когда в результате реакции выпадает осадок):

$$\begin{aligned} H_2SO_4 + 2NaOH &= Na_2SO_4 + 2H_2O \\ CO_2 + 2NaOH &= Na_2CO_3 + H_2O \\ CO_2 + NaOH &= NaHCO_3 \\ CuSO_4 + 2NaOH &= Cu(OH)_2 \downarrow &+ Na_2SO_4 \end{aligned}$$

$$HC1 + NaOH = NaC1 + H_2O$$

6. Напишите уравнения реакций, при помощи которых можно осуществить превращения:

7.
$$Ca \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCl_2$$

 $Zn \rightarrow ZnCl_2 \rightarrow Zn(OH)_2 \rightarrow ZnO$

$$\frac{OTBET:}{1) 2Ca + O_2 = 2CaO}$$
 $CaO + H_2O = Ca(OH)_2$
 $Ca(OH)_2 + 2HCl = CaCl_2 + 2H_2O$

2)
$$Zn + 2HCl = ZnCl_2 + H_2 \uparrow$$

 $ZnCl_2 + 2NaOH = Zn(OH)_2 + H_2 \uparrow = Zn(OH)_2 + 2NaCl$
 $Zn(OH)_2 = ZnO + H_2O$

3)
$$2Cu +O_2 = 2CuO$$

 $CuO + H_2SO_4 = CuSO_4 + H_2O$
 $CuO + H_2 = Cu + H_2O$
 $CuO + 2HC1 = CuCl_2 + H_2O$
 $CuCl_2 + Fe = Cu + FeCl_2$

- 8. Напишите уравнения реакций разложения при нагревании:
- а) гидроксида меди (II), б) гидроксида железа (III), в) гидроксида алюминия.

$$\frac{\text{OTBET:}}{t^0}$$
a) $\text{Cu(OH)}_2 \rightarrow \text{CuO} + \text{H}_2\text{O}$

$$t^0$$
6) $2\text{Fe(OH)}_3 \rightarrow \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O}$

$$t^0$$
B) $2\text{Al}(\text{OH})_3 \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O}$

9. Расположите соединения, формулы которых даны ниже, в порядке возрастания содержания в них железа: а) Fe_3O_4 , б) $Fe(OH)_3$, в) $FeSO_4$, г) FeO, д) Fe_2O_3 .

<u>Ответ :</u>

б)
$$M_r(Fe(OH)_3) = 56 + 3(16 + 1) = 107$$
 w $_{(Fe)} = Ar(Fe)/M_r$ $(Fe(OH)_3) = 56/107 = 0,523$ или $52,3\%$

B)
$$M_r(FeSO_4) = 56 + 32 + 4.16 = 152$$

в)
$$M_r(FeSO_4) = 56 + 32 + 4.16 = 152$$
 w $_{(Fe)} = Ar(Fe)/M_r(FeSO_4) = 56/152 = 0,386$ или $36,8\%$

$$\Gamma$$
) M_r (FeO) = $56 + 16 = 72$

$$\mathbf{\omega}$$
 (Fe) = 56/72 = 0.777 или 77,7%

$$д) M_r (Fe2O3) = 2 \cdot 56 + 3 \cdot 16 = 160$$
 70%

$$oldsymbol{\omega}_{(Fe)} = 2 \cdot \text{Ar}(Fe) / M_r \ (Fe_2O_3) = 2 \cdot 56 / 160 = 0,7$$
или

Ответ:

Содержания железа увеличивается в следующем ряду: FeSO₄<Fe(OH)₃<Fe₂O₃<Fe₃O₄<FeO.

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Напишите электронные формулы атомов следующих элементов: Li, Cr, Br, S. Какие ионы могут образовать атомы этих элементов? Напишите уравнения процессов образования этих ионов.
- 2. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $NaI+NaIO_3+H_2SO_4=I_2+Na_2SO_4+H_2O_1$ $MnO_2+NaBiO_3+HNO_3=HMnO_4+Bi(NO_3)_3+NaNO_3+H_2O_3$

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Напишите электронные формулы атомов следующих элементов: Na, Rb, I, S. Какие ионы могут образовать атомы этих элементов? Напишите уравнения процессов образования этих ионов.
- 4. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $MnO_2+O_2+KOH = K_2MnO_4+H_2O$ $FeSO_4+KMnO_4+H_2SO_4 = Fe_2(SO_4)_3+MnSO_4+K_2SO_4+H_2O_4$

Химическая связь. Окисл. Восстан. реакции Вариант№

1. Допишите уравнения следующих процессов образования ионов:

a)
$$Mg^0 - 2e = ...$$

6) $S^0 ... = S^{-2}$

в)
$$Fe^0 - 3e =$$

$$6) S^{0} = S^{-2}$$

r)
$$Fe^0 ... = Fe^{+2}$$

4. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $H_2S+HNO_3=H_2SO_4+NO_2+H_2O_3$

 $H_2S+H_2SO_3=S+H_2O$

Химическая связь. Окисл. Восстан. реакции

Вариант№

- 1. Какой тип связи (неполярная, полярная, ковалентная, ионная) в молекулах следующих веществ: O₂, HBr, CsBr, Na₂S, CCl₄, H₂O?
- 4. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

H₂S+K₂Cr₂O₇+H₂SO₄=S+Cr₂(SO₄)₃+K₂SO₄+H₂O Na₂SO₃+KMnO₄+H₂SO₄=Na₂SO₄+MnSO₄+K₂SO₄+H₂O

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Напишите электронные и графические формулы следующих молекул: HF, H₂O, NH₃.
- 4. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $MnO_2+AI=AI_2O_3+Mn$ $(NH_4)_2Cr_2O_7=N_2+Cr_2O_3+H_2O$

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Напишите графическую формулу молекулы оксида углерода (IV). Сколько $\sigma-$ и π -связей в этой молекуле?
- 2. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

KI+KMnO₄+H₂SO₄= MnSO₄+I₂+K₂SO₄+H₂O Cr(NO₃)₃+NaBiO₃+HNO₃= H₂Cr₂O₇+Bi(NO₃)₃+NaNO₃+H₂O

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Какой тип ковалентной связи полярная или неполярная в молекулах следующих веществ: CO, HI, H₂S, OF₂, CH₄? К атомам каких элементов смещаются общие электронные пары в этих молекулах?
- 2. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

NaBr+KMO₄+H₂O=Br₂+MnO₂+NaOH+KOH MnO₂+KCIO₃+KOH=K₂MnO₄+KCI+H₂O

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Какой тип ковалентной связи полярная или неполярная в молекулах следующих веществ: CO, HI, H_2S , OF_2 , CH_4 ? K атомам каких элементов смещаются общие электронные пары в этих молекулах?
- 4. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $MnO_2+NaBiO_3+HNO_3 = HMnO_4+Bi(NO_3)_3+NaNO_3+H_2O_3$

Химическая связь. Окисл. Восстан. реакции Вариант№

- 1. Напишите графическую формулу молекулы оксида углерода (IV). Сколько $\sigma-$ и $\pi-$ связей в этой молекуле?
- 2. Методом электронного баланса составьте уравнения окислительно-восстановительных реакций:

 $MnO_2+NaBiO_3+HNO_3 = HMnO_4+Bi(NO_3)_3+NaNO_3+H_2O$ $MnO_2+O_2+KOH = K_2MnO_4+H_2O$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №1

- 1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃.
- 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + N_2O_5 \rightarrow NAOH +$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №2

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂, Pb(OH)₂, H₃PO₄, AIOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $KOH + Ca(OH)_2 \rightarrow KOH + MgCI_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №3

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений $NH_4(NO_3)_2$, $Mg(OH)_2$, RbCI, $NaHCO_3$, H_2SO_3 .

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №4

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Cr(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$\begin{array}{ccc} AgOH + Ca(OH)_2 \rightarrow & AgOH + MgCI_2 \rightarrow \\ AgOH + Sn(OH)_2 \rightarrow & AgOH + SO_3 \rightarrow \\ AgOH + H_2SO_4 \rightarrow & AgOH + ZnO \rightarrow \end{array}$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №5

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений CrCl₂, Mg(OH)₂,RbNO₃, NaHSO₃.

2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$NaOH + Ni(OH)_2 \rightarrow$	$NaOH + Pb(NO_3)_2 \rightarrow$
NaOH + Ba(OH) ₂ \rightarrow	$NaOH + SnO \rightarrow$
NaOH $+H_2SO_3 \rightarrow$	$NaOH + N_2O_5 \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №6

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Fe(NO₃)₂, Cr(OH)₂, H₃BO₃, NiOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + MgCI_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №7

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Cr(MnO₄)₂, Mg(OH)₂, RbOH, LiHCO₃. 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

NaOH + Cu(OH)₂
$$\rightarrow$$
 NaOH + Pb(SO₃)₂ \rightarrow NaOH + Ba(OH)₂ \rightarrow NaOH + CrO \rightarrow NaOH + H₂CO₃ \rightarrow NaOH + N₂O₅ \rightarrow

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №8

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Cr(NO₃)₂, Pb(OH)₂, H₂SO₄, AIOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Ca(OH)_2 \rightarrow$	$KOH + BaCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + N_2O_5 \rightarrow$
$KOH + H_2SO_4 \rightarrow$	$KOH + PbO \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №9

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃.
2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$NaOH + Ni(OH)_2 \rightarrow$	$NaOH + Pb(NO_3)_2 \rightarrow$
NaOH + Ba(OH) ₂ \rightarrow	$NaOH + SnO \rightarrow$
NaOH $+H_2SO_3 \rightarrow$	$NaOH + N_2O_5 \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №10

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений NaNO₃, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Cr(OH)_3 \rightarrow$	$KOH + BaCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + Cr_2O_3 \rightarrow$
$KOH +H_3PO_4 \rightarrow$	$KOH + ZnO \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №11

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂,RbOH, KHCO₃. 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + N_2O_3 \rightarrow NaOH + N_2O_5 \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №12

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений $Ba(NO_2)_2$, $Pb(OH)_2$, H_3BO_3 , $Cu(HSO_4)$, $AI(HSO_4)_3$ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $KOH + Pb(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + SO_3 \rightarrow KOH + H_2SO_3 \rightarrow KOH + CaO \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №14

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Al(OH)₃, KHCO₃ FeCl₃.
2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Mg(OH)_2 \rightarrow NaOH + Be(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + P_2O_3 \rightarrow NaOH + P_2O_5 \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №15

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂, Pb(OH)₂, H₃PO₄, AIOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $KOH + Ca(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №16

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂,RbOH, KHCO₃.

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow NAO$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №17

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Zn(NO₃)₂, Pb(OH)₂, H₃BO₃, FeOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NH_4OH + Ca(OH)_2 \rightarrow NH_4OH + MgCI_2 \rightarrow NH_4OH + Sn(OH)_2 \rightarrow NH_4OH + H_2SO_4 \rightarrow NH_4OH + ZnO \rightarrow NH_4OH + ZnO \rightarrow$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №18

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений NaNO₃, Be(OH)₂,KOH, LiHCO₃, H₂SO₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$LiOH + Ni(OH)_2 \rightarrow$	$LiOH + Pb(NO_3)_2 \rightarrow$
$LiOH + Ba(OH)_2 \rightarrow$	$LiOH + SnO \rightarrow$
LiOH $+H_2SO_3 \rightarrow$	$LiOH + N_2O_5 \rightarrow$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №19

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂. Pb(OH)₂, H₃PO₄, AIOHSO₄, Fe(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + SO_3 \rightarrow$$

«Теория электролитической диссоциации. Водные растворы электролитов»

Вариант №20

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃.

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow NAO$$

«Теория электролитической диссоциации. Водные растворы электролитов» Вариант №21

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + SO_3 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$$

«Теория электролитической диссоциации. Водные растворы электролитов» Вариант №22

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Ca(OH)_2 \rightarrow$	$KOH + MgCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + SO_3 \rightarrow$
$KOH +H_2SO_4 \rightarrow$	$KOH + ZnO \rightarrow$

«Классы неорганических соединений»

- 1. Напишите формулы следующих оксидов и укажите их химический характер:
 - а) оксид фосфора(V), б) оксид магния, в) оксид хрома(VI), г) оксид алюминия.
- 2. Напишите:
- а) для кислот HNO_2 и H_3BO_3 возможные кислотные остатки, указав их зарядность и формулу кислотного остатка;

- б) для оснований NaOH и Fe(OH)₂ возможные основные остатки, указав их зарядность и форму основного оксида;
 - в) графические формулы HNO₂ и Fe(OH)₂.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида цинка Zn(OH)₂ с растворами:
 - а) гидроксида натрия, б) азотной кислотой.
- 4. Составьте эмпирические графические формулы солей и укажите тип соли:
- а) гидрокарбонат кальция, б) сульфат железа (II), в) нитрат-гидроксид алюминия (гидроксонитрат алюминия).
- 5. Укажите, с какими из перечисленных веществ может реагировать соляная кислота:
- а) оксид алюминия, б) фосфорная кислота, в) гидроксид железа (III), г) нитрат серебра, д) оксид кремния (IV), ж) хлорид- гидроксид меди(II). Объясните, запишите уравнения возможных реакций и назовите продукты реакции.

Вариант 2

- 1. Напишите формулы следующих оксидов и укажите их химический характер:
- а) оксид бериллия, б) оксид марганца (VII), в) оксид углерода (IV), г) оксид кальция.
- 2. Напишите для кислот:
- а) HCIO₄ и H₃PO₄ возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований Au(OH)₃ и CuOH возможные основные остатки, указав зарядность и формулу основного оксида;
 - в) графические формулы НСІО4 и Аu(OH)3.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида олова (II) Sn(OH)₂ с растворами: а) азотной кислоты, б) гидроксидом натрия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) дигидрофосфат натрия, б) карбонат кальция, в) карборат-гидроксид кальция (гидроксокарбонат кальция).
- 5. Укажите, с какими из перечисленных веществ может реагировать азотная кислота: а) оксид железа (III), б) мышьяковая кислота, в) гидроксид меди (II), карбонат кальция, д) оксид фосфора(V), ж) гидроксонитрат железа (II). Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

- 1. Напишите формулы оксидов элементов (II) периода периодического системы, учитывая их высшую валентность, и укажите химический характер оксидов.
- 2. Напишите: а) для кислот HCIO и H_2CO_3 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида, б) для оснований $Cu(OH)_2$ и RbOH возможные основные остатки, указав их зарядность и формулу основного оксида, в) графические формулы H_2CO_3 и $Cu(OH)_2$.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида бериллия Be(OH)₂ с растворами: а) гидроксида натрия, б) соляной кислоты.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: a) сульфат натрия, б) гидроксохлорид магния, в) гидросиликат калия.
- 5. Укажите, с какими из перечисленных веществ может реагировать оксид кальция: а) оксид натрия, б) вода, в) фосфорная кислота, г) оксид хлора (I), д) гидроксид калия, ж) нитрат цинка. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Вариант 4

- 1. Назовите оксиды As_2O_5 , MnO, Mn_2O_7 , Al_2O_3 , CaO и укажите их химический характер. Закончите уравнение реакции $Mn_2O_7 + H_2O \longrightarrow$ назовите продукты реакции.
- 2. Напишите:
- а) для кислот H_2SO_3 и $HAIO_2$ возможные кислотные остатки, указав их зарядность и формулу кислотного оксида,
- б) для оснований Mn(OH)₃ и Ba(OH)₂ возможные основные остатки, указав их зарядность и формулу основного оксида,
 - г) графические формулы HAIO₂ и Mn(OH)₂.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида хрома (III) с растворами: а) серной кислоты, б) гидроксида калия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) дигидрофосфат калия, б) сульфид цинка, в) гидроксосульфат магния.
- 5. Укажите, с какими из перечисленных веществ может реагировать гидроксид кальция: а) вода, б) фосфорная кислота, в) оксид углерода (IV), г) оксид натрия, д) хлорид железа(III), ж) гидрокарбонат кальция. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Вариант 5

- 1. Составьте формулы оксидов элементов III периода периодической системы, учитывая их высшую валентность, и укажите химический характер оксидов.
- Напишите:
- а) для кислот H_2MoO_4 и H_3PO_4 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований $Ni(OH)_2$ и KOH возможные основные остатки, указав их зарядность и формулу основного оксида;
 - в) графические формулы H₃PO₄ и Ni(OH)₂.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида свинца (II) с растворами: а) азотной кислоты, б) гидроксида натрия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) сульфат магния, б) гидрофосфат магния, в) гидроксонитрат магния.
- 5. Укажите, с какими из перечисленных веществ может реагировать оксид серы (VI): а) вода, б) гидроксид бария, в) оксид углерода (IV), г) нитрат меди (II), д) оксид алюминия, ж) фосфорная кислота. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

- 1. Напишите формулу оксида и укажите его химический характер: а) оксид цинка, б) оксид хлора (V), в) оксид фосфора (III), г) оксид железа (II).
- 2. Напишите:
- а) для кислот H_2MoO_4 и $HClO_2$ возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований CsOH и Fe(OH)₃ основные остатки, указав их зарядность и формулу основного оксида;
 - в) графические формулы H₂MoO₄ и Pb(OH)₄.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида свинца (IV) Pb(OH)₄ с растворами: а) азотной кислоты, б) гидроксида натрия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) гидрофосфат калия, б) фосфат железа(III), в) гидроксохлорид железа(III).

5. Укажите, с какими из перечисленных веществ может реагировать гидроксид калия: а) гидроксид бериллия, б) оксид натрия, в) нитрат меди(II), г) оксид углерода (IV), д) сероводородная кислота, ж) гидросульфид калия. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Вариант 7

- 1. Назовите оксиды и укажите их характер: а) SO_3 , б) SO_2 , в) FeO, г) AsO_3 . Допишите уравнение реакции $SO_2 + H_2O \longrightarrow$ назовите продукты реакции.
- 2. Напишите:
- а) для кислот: H_2SiO_3 , H_3 AsO₄ возможные кислотные остатки указав их зарядность и формулу кислотного оксида.
- б) для оснований: H_2SiO_3 , КОН возможные основные остатки, указав их зарядность и формулу основного оксида.
 - г) графические формулы: H₂SiO₃, H₂SiO₃.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида цинка $Zn(OH)_2$ с растворами: а) серной кислоты, б) гидроксидом натрия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) хлорид алюминия, б) хлорид-гидроксид алюминия, в) гидросульфат магния, г) гидроксохлорид алюминия.
- 5. Укажите, с какими из перечисленных веществ может реагировать бромоводородная кислота: а) оксид железа (VI), б) силикат натрия, в) оксид алюминия, г) нитрат серебра, д) сернистая кислота, ж) бромид-гидроксид магния. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Вариант 8

- 1. Напишите формулы следующих оксидов и укажите их химический характер: а) оксид углерода (IV), б) оксид ванадия (V), в) оксид ванадия (III).
- 2. Напишите:
- а) для кислот HJO_3 и H_3PO_4 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида.
 - б) для оснований CsOH и Mn(OH) возможные основные остатки, указав их зарядность и формулу основного оксида
 - в) графические формулы НЈО3 и Мп(ОН)3.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида олова, Sn(OH)₂ с растворами: гидроксида натрия, б) азотной кислотой.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) сульфид алюминия, б) гидросиликат натрия, в) гидроксонитрат кальция.
- 5. Укажите, с какими из перечисленных веществ может реагировать серная кислота: а) нитрат бария, б) оксид хрома (VI), в) гидроксид алюминия, г) фосфорная кислота, д) оксид железа (II), ж) гидросульфат натрия. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

- 1. Напишите формулы следующих оксидов и укажите их химический характер: а) оксид бериллия, б) оксид марганца (VII), в) оксид углерода(IV), г) оксид кальция.
- 2. Напишите:
- а) для кислот $HCIO_4$ и H_3PO_4 , возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;

- б) для оснований Au(OH)₃ и CuOH возможные основные остатки, указав их зарядность формулу основного оксида;
 - в) графические формулы НСІО4 и Аu(OH)3.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида олова Sn(OH)₂ с растворами: а) азотной кислоты, б) гидроксида натрия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) дигидрофосфат натрия, б) карбонат кальция, в) гидроксокарбонат натрия.
- 5. Укажите, с какими из перечисленных веществ может реагировать азотная кислота: а) оксид железа (III), б) мышьяковая кислота, в) гидроксид меди (II), г) карбонат кальция, д) оксид фосфора (V), ж) гидроксонитрат железа (II). Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Вариант 10

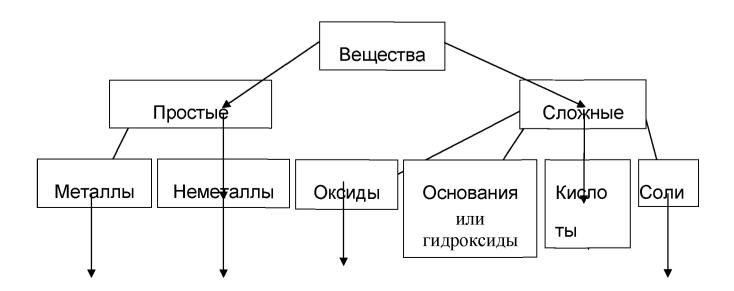
- 1. Напишите формулы следующих оксидов и укажите их химический характер: а) оксид натрия, б) оксид азота (V), в) оксид серы (VI), г) оксид железа (II).
- 2. Напишите:
- а) для кислот HNO_3 и H_3PO_4 возможные кислотные остатки, указав их зарядность и формулу кислотного остатка;
- б) для оснований LiOH и $Cu(OH)_2$ возможные основные остатки, указав их зарядность формулу основного оксида;
 - в) графические формулы H₂SO₃ и Fe(OH)₃;
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида хрома (III) с растворами: а) гидроксид калия, б) азотная кислота.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) карбонат магния, б) сульфат железа (III), в) гидрофосфат кальция.
- 5. Укажите, с какими из перечисленных веществ может реагировать соляная кислота: a) CuO, б) Cu, в) Cu(OH)₂, г) Ag, д) Al(OH)₃.

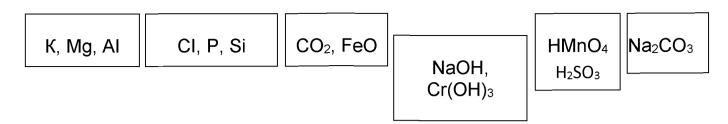
Вариант 11

- 1. Напишите формулы следующих оксидов и укажите их химический характер: а) оксид кальция, б) оксид марганца (VI), в) оксид углерода (IV), г) оксид бериллия.
- 2. Напишите:
- а) для кислот H_2SO_4 и H_3PO_4 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований $Al(OH)_3$ и LiOH возможные основные остатки, указав их зарядность формулу основного оксида;
 - в) графические формулы Al(OH)₃ и H₂SO₄.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида алюминия с растворами: а) соляной кислоты, б) гидроксида калия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) хлорид бериллия, б) дигидрофосфат натрия, в) гидроксосульфат алюминия.
- 5. Укажите, с какими из перечисленных веществ может реагировать азотная кислота: а) гидроксонитрат железа (II), б) оксид фосфора (V), в) карбонат кальция, г) гидроксид меди (II), д) мышьяковая кислота, ж) оксид железа (III).

- 1. Напишите формулу оксидов элементов III периода периодической системы, учитывая их высшую валентность, и укажите химический характер оксидов.
- 2. Напишите:

- а) для кислот HClO и H_2SO_3 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований CsOH и $Zn(OH)_2$ возможные основные остатки, указав их зарядность формулу основного оксида;
 - в) графические формулы H₂CO₃ и Zn(OH)₂.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида бериллия с растворами: а) гидроксида натрия, б) серной кислоты.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: а) сульфат хрома (III), б) гидросиликат кальция, в) гидроксохлорид магния, г) гидроксохлорид бария.
- 5. Укажите, с какими из перечисленных веществ может реагировать вода: BaO, Li₂O, CuO, SO₃, CaO, SiO₂, P₂O₅, Fe₂O₃, Al₂O₃, Na₂O, Mn₂O₇. Напишите уравнения реакций.

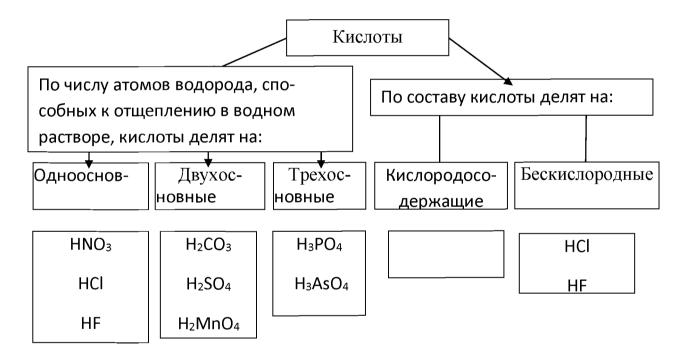

Вариант 13


- 1. Назовите оксиды: Na_2O , N_2O_5 , CrO_3 , CaO, SiO_2 , и укажите их химический характер. Закончите уравнения реакции $Mn_2O_7 + H_2O \longrightarrow$, назовите продукты реакции.
- 2. Напишите:
- а) для кислот HNO_2 и H_3PO_4 возможные кислотные остатки, указав их зарядность и формулу кислотного оксида;
- б) для оснований $Mn(OH)_3$, и $Ba(OH)_2$ возможные основные остатки, указав их зарядность формулу основного оксида;
 - в) графические формулы Н₃РО₄ и Мп(ОН)₃.
- 3. Запишите уравнения реакций взаимодействия амфотерного гидроксида алюминия с растворами: а) азотной кислоты, б) гидроксида калия.
- 4. Составьте эмпирические и графические формулы солей и укажите тип соли: сульфат алюминия, карбонат натрия, дигидрофосфат калия, дигидроксохлорид алюминия.
- 5. Укажите, с какими из перечисленных веществ может реагировать оксид бария: Al, Al $_2$ O $_3$, S, SO $_2$, H $_2$ SO $_4$, Na $_2$ SO $_4$. Объясните и запишите уравнения возможных реакций и назовите продукты реакций.

Классы неорганических соединений.

Химические вещества принято делить на две большие группы: немногочисленную группу простых веществ (их, с учетом аллотропных модификаций насчитывается около 400) и очень многочисленную группу сложных веществ. Сложные вещества обычно делят на четыре важнейших класса: оксиды, основания (гидроксиды), кислоты и соли.

Приведенная выше первичная классификация является несовершенной, т.к. в ней нет места для аммиака, гидридам, нитридам, и другим бинарным соединениям металлов с неметаллами.



Кислоты

Кислоты – это сложные вещества, в молекулах которых атомы водорода связаны с кислотными остатками. С точки зрения теории электрической диссоциации, кислотой называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водорода \mathbf{H}^{+} .

Обычно название кислородсодержащих кислот производится от названия неметалла с прибавлением окончаний —ная, -вая, если степень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются в следующем порядке: -оватая, -истая, -оватистая.

Получение кислот

a) Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:

$$H_2 + Cl_2 = 2HCl$$

$$H_2 + S = H_2 S$$

$$H_2 + F_2 = 2HF$$

$$H_2 + Br_2 = 2HBr$$

б) Кислородсодержащие кислоты могут быть получены при взаимодействии кислотных оксидов с водой.

$$P_2O_5 + H_2O = 2HPO_3$$

 $P_2O_5 + 3H_2O = 2H_3PO_4$
 $As_2O_5 + 3H_2O = 2H_3AsO_4$
 $Cl_2O_7 + H_2O = 2HClO_4$
 $CO_2 + H_2O = H_2CO_3$
 $SO_3 + H_2O = H_2SO_4$
 $N_2O_5 + H_2O = 2HNO_3$
 $6ClO_2 + 3H_2O = 5HClO_3 + HCl$

в) Как бескислородные, так и кислородосодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

$$KClO_4 + H_2SO_4 = KHSO_4 + HClO_4$$

 $CaBr_2 + H_2SO_3 = CaSO_3 \downarrow + 2HBr$
 $FeSO_4 + H_2S = FeS \downarrow + H_2SO_4$
 $Na_2SiO_3 + 2HCl = H_2SiO_3 \downarrow + 2NaCl$
 $Ba(ClO_3)_2 + H_2SO_4 = 2HClO_3 + BaSO_4 \downarrow$

r) Некоторые металлы восстанавливают азотную кислоту (HNO₃) с образованием соответствующих кислот:

$$3P + 5HNO_3 + 2H_2O = 3H_3PO_4 + 5NO \uparrow$$

 $S + 2HNO_3 = H_2SO_4 + 2NO \uparrow$
 $3C + 4HNO_3 = 2H_2CO_3 + 4NO + CO_2 \uparrow$

д) При нагревании хлор способен вытеснять бром, йод, или серу из соответствующих бескислородных кислот:

$$Cl_2 + 2HBr = {}^{t}{}^{\circ}_{2}HCl + Br_2$$

$$Cl_2 + 2HI = {}^{t}{}^{\circ}_{2}HCl + I_2$$

$$Cl_2 + H_2S = {}^{t}_{2}HCl + S$$

e) Сильную азотную кислоту можно получить при растворе бурого газа в воде в присутствии кислорода:

$$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$$
 или

в лабораторных условиях при взаимодействии нитратов щелочных металлов с концентрированной серной кислотой:

$$KNO_3 + H_2SO_4 \rightarrow KHSO_4 + HNO_3$$

Химические свойства кислот Химические свойства серной кислоты

а) При взаимодействии концентрированной серной кислоты с различными металлами, как правило, происходит ее восстановление до оксида серы (IV), например:

$$Z_{n} + 2H_{2}SO_{4(KOHII)} = Z_{n}SO_{4} + SO_{2}\uparrow + H_{2}O$$

 $C_{u} + 2H_{2}SO_{4(KOHII)} = C_{u}SO_{4} + SO_{2}\uparrow + 2H_{2}O$

д) При взаимодействии концентрированной серной кислоты с некоторыми неметаллами также происходит ее восстановление до оксида серы (IV), например:

$$C + 2H_2SO_4_{(KOHII)} = H_2CO_3 + 2SO_2 \uparrow + H_2O$$

 $S + 2H_2SO_4_{(KOHII)} = 2H_2O + 3SO_2 \uparrow$
 $2P + 5H_2SO_4_{(KOHII)} = 2H_3PO_4 + 5SO_2 \uparrow + 2H_2O$

в) Разбавленная серная кислота окисляет только металлы, стоящие в ряду напряжений левее водорода, например:

$$Zn + H_2SO_4$$
 (pa36) = $ZnSO_4 + H_2\uparrow$
 $Mg + H_2SO_4$ (pa36) = $MgSO_4 + H_2\uparrow$

г) При взаимодействии щелочами серная кислота образует два типа солей, средние (сульфаты) и кислые (гидросульфаты):

$$2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O$$

 $NaOH + H_2SO_4 = NaHSO_4 + H_2O$

д) При взаимодействии с оксидами металлов серная кислота образует соль и воду:

$$H_2SO_4 + K_2O = K_2SO_4 + H_2O$$

 $H_2SO_4 + MgO = MgSO_4 + H_2O$
 $3H_2SO_4 + Al_2O_3 = Al_2(SO_4)_3 + 3H_2O$

Химические свойства азотной кислоты

а) Азотная кислота реагирует с оксидами металлов с образованием соли и воды:

$$2HNO_3 + K_2O = 2KNO_3 + H_2O$$

 $2HNO_3 + MgO = Mg(NO_3)_2 + H_2O$
 $6HNO_3 + Fe_2O_3 = 2Fe(NO_3)_3 + 3H_2O$

б) Азотная кислота реагирует с основаниями (реакция нейтрализации):

$$HNO_3 + NaOH = NaNO_3 + H_2O$$

 $2HNO_3 + Zn(OH)_2 = Zn(NO_3)_2 + 2H_2O$
 $3HNO_3 + Cr(OH)_3 = Cr(NO_3)_3 + 3H_2O$

в) Концентрированная азотная кислота реагирует с металлами с образованием оксида азота(IV):

$$\begin{array}{l} Ag + 2HNO_{3 \text{ (KOHII)}} = AgNO_{3} + NO_{2} \uparrow \ \ + H_{2}O \\ Cu + 4HNO_{3 \text{ (KOHII)}} = Cu(NO_{3})_{2} + 2NO_{2} \uparrow \ \ + 2H_{2}O \\ Zn + 4HNO_{3 \text{ (KOHII)}} = Zn(NO_{3})_{2} + 2NO_{2} + 2H_{2}O \end{array}$$

д) Некоторые неметаллы восстанавливают азотную кислоту до оксида азота реже до оксида азота(IV):

$$S + 2HNO_3 = H_2SO_4 + 2NO$$

 $3C + 4HNO_3 = 2H_2CO_3 + 4NO \uparrow + CO_2 \uparrow$
 $3Si + 4HNO_3 = 2H_2SiO_3 + 4NO \uparrow + SiO_2 \downarrow$

 Γ) Разбавленная азотная кислота реагирует с некоторыми металлами с образованием оксида азота(II):

$$3Ag + 4HNO_{3 (pa36)} = 3AgNO_{3} + NO\uparrow + 2H_{2}O$$

 $3Cu + 8HNO_{3 (pa36)} = 3Cu(NO_{3})_{2} + 2NO\uparrow + 4H_{2}O$

e) Со сложными веществами азотная кислота восстанавливается, как правило до NO (реже до NO₂) оксида азота(II), реже до оксида азота (IV):

 \mathbf{w}) Очень разбавленная азотная кислота с металлами образует нитрат аммония: $Mg + 10HNO_3 = 4Mg(NO_3)_2 + NH_4NO_3 + 3H_2O$

Химические свойства других кислот

a) При взаимодействии кислот с металлами, расположенными в электрохимическом ряду левее водорода, образуется соль и выделяется газообразный водород, кроме азотной кислоты:

$$3H_2SO_3 + 2AI = AI_2(SO_3)_3 + 3H_2\uparrow$$

 $2H_3PO_4 + 3Mn = Mn_3(PO_4)_2 + 3H_2\uparrow$
 $2HNO_2 + Fe = Fe (NO_2)_2 + H_2\uparrow$

б) С основными оксидами кислоты реагируют с образованием соли и воды:

$$H_2CO_3 + CaO = CaCO_3 + H_2O$$

 $H_2S + MgO = MgS + H_2O$
 $2H_3PO_4 + 3ZnO = Zn_3(PO_4)_2 + 3H_2O$

в) С основаниями кислоты реагируют с образованием соли и воды:

$$H_2CO_3 + Ca(OH)_2 = CaCO_3 + 2H_2O$$

 $H_2SO_3 + Zn(OH)_2 = ZnSO_3 + 2H_2O$
 $H_3PO_4 + Fe(OH)_3 = FePO_4 + 3H_2O$

г) C солями кислоты вступают в реакцию обмена, где образуется новая соль и новая кислота:

$$H_2CO_3 + CaSO_3 = CaCO_3 \downarrow + H_2SO_3$$

 $HCl + AgNO_3 = AgCl \downarrow + HNO_3$
 $H_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2HCl$
 $2H_3PO_4 + 3Na_2SiO_3 = 3H_2SiO_3 + 2Na_3PO_4$

Типовые примеры к теме: «Кислоты»

Пример 1.

Какие вещества называются кислотами? Начертите в тетради приведенную ниже таблицу, и в соответствующих графах запишите химические формулы известных вам кислот. Подчеркните кислотные остатки и отметьте их валентность.

		Кислоты		
Кислородосодержащие	Бескислородные	Одноосновные	Двухосновные	Трехосновные

Ответ:

Кислотами называются вещества, которые состоят из атомов водорода, способных замещаться на атомы металла и кислотных остатков. С точки зрения теории электрической диссоциации кислоты — это вещества, которые в водном растворе диссоциируют на ионы водорода и кислотного остатка.

Кислоты				
Кислородосодержащие	Бескислородные	Одноосновные	Двухосновные	Трехосновные
I	I	Ī	II	III
HNO ₃	H <u>Cl</u>	H <u>NO</u> 3	H2 <u>SO</u> 4_	H ₃ PO ₄
II	II	I	II	III
H ₂ <u>SO</u> ₄	H2 <u>S</u>	H <u>NO</u> 2	H2 <u>S</u>	H ₃ <u>BO</u> ₃
III	I	I	II	
H ₃ <u>PO</u> ₄	H <u>Br</u>	H <u>F</u>	H ₂ CO ₃	

Пример 2.

Составьте структурные формулы следующих кислот: а) угольной, б) бромоводородной, в) сернистой, г) хлорной HClO₄

а) угольная кислота H_2CO_3 : H-O-C=O или

$$H-O-C$$
 $O-H$

б) бромоводородная кислота HBr: H – Br

в) сернистая кислота
$$H_2SO_3$$
 : $S = O \begin{tabular}{c} O - H_2 \\ \hline O - H_3 \\ \hline \end{array}$

$$^{\rm O}_{\rm II}$$
г) хлорная кислота HClO₄: H – O – Cl – O

3. Какими способами получают кислоты? Составьте уравнения реакций.

<u>Отве</u>т :

Кислородсодержащие кислоты можно получить взаимодействием кислотных оксидов с водой: $SO_3 + H_2O = H_2SO_4$

- 1) Бескислородные кислоты получают взаимодействием водорода с неметаллом: $H_2 + Cl_2 = 2HCl$
 - 2)Сильные кислоты вытесняют более слабые из них солей:

$$K_2S + H_2SO_4 = K_2SO_4 + H_2S\uparrow$$

- 4. Какими двумя способами можно получить: а) ортофосфорную кислоту, б) сероводородную кислоту? Напишите уравнение соответствующих реакций. Ответ:
- а) 1) реакция оксида фосфора (V) с водой:

$$P_2O_5 + 3H_2O = 2H_3PO_4$$

2) реакция солей фосфорной кислоты с сильными кислотами:

$$Ca_3(PO_4)_2 + 6 HCl = 3CaCl_2 + 2H_3PO_4$$

б) 1) реакция солей сероводородной кислоты с сильными кислотами:

$$K_2S + 2HCl = 2KCl + H_2S\uparrow$$

2) реакция серы с водородом и растворения H_2S в воде:

$$H_2 + S = H_2S \uparrow$$

5. запишите по три уравнения реакции разложения, соединения, замещения и обмена с участием кислот.

<u>Ответ :</u>

- 1) Разложение: $H_2SiO_3 = H_2^{\circ}O + SiO_2$, $H_2SO_3 = H_2^{\circ}O + SO_2$, $2HI = H_2^{\circ} + I_2$
- 2) Соединение: $P_2O_5 + 3H_2O = 2H_3PO_4$, $SO_3 + H_2O = H_2SO_4$, $Ca_3(PO_4)_2 + H_3PO_4 = 3CaHPO_4$
- 3) Замещение: $Zn + 2HCl = ZnCl_2 + H_2 \uparrow$ $Fe + H_2SO_4 = FeSO_4 \uparrow + H_2$

$$2Na + H_3PO_4 = Na_2HPO_4 + H_2\uparrow$$

4) Обмен: NaOH + HCl = NaCl + H_2O

$$CaO + 2HNO_3 = Ca(NO_3)_2 + H_2O$$

$$Na_2S + H_2SO_4 = Na_2SO_4 + H_2S\uparrow$$

- 5. Напишите и приведите по три уравнения химических реакций, характеризующих химические свойства кислот. Отметьте, к какому типу реакции они относятся.
 - Ответ:
- 4) Кислота + металл = соль + водород реакция замещения

$$Zn+2HCI=ZnCI_2+H_2\uparrow$$

$$Fe+H_2SO_4=FeSO_4+H_2\uparrow$$

$$3Mg+2H_3PO_4=Mg_3(PO_4)_2+3H_2\uparrow$$

Fe $(OH)_3 + 3HNO_3 = Fe(NO_3)_3 + 3H_2O$

- 5) Кислота + основной оксид = соль + вода реакция обмена $3Li_2O+2H_3PO_4=2Li_3PO_4+3H_2O$ $CaO+2HNO_3=Ca~(NO_3)_2+H_2O$ $Fe_2O_3+3H_2SO_4=Fe_2(SO_4)_3+3H_2O$ 6) Кислота +основание = соль + вода реакция обмена $NaOH+HCI=NaCI+H_2O$ $Mg~(OH)_2+H_2SO_4=MgSO_4+2H_2O$
- 7) Кислота + соль = другая соль + другая кислота- реакция обмена $Na_2SiO_3+2HNO_3=2NaNO+H_2SiO_3\downarrow$ $K_2S+H_2SO_4=K_2SO_4+H_2S\uparrow$ Ca_3 (PO₄)₂ +6HCl = $3CaCI_2+2H_3PO_4$
- 7. Какие из веществ, формулы которых приведены, реагируют с соляной кислотой:
- a) CuO, б) Cu, в) Cu(OH)₂, г) Ag, д) AI(OH)₃?

Ответ:

С соляной кислотой реагируют основные оксиды и основания, но не реагируют металлы, стоящие в ряду напряжений правее H_2 водорода:

- a) $CuO + 2HC1 = CuCl_2 + H_2O$
- 6) Cu + HCI =
- B) $Cu (OH)_2 + 2HCl = CuCl_2 + 2H_2O$
- Γ) Ag + HCl =
- $_{\rm A}$) Al(OH)₃ + 3HCl = AlCl₃ + 3H₂O
- 8. Напишите уравнения реакций, которые осуществимы:

Ответ:

$$2Na + 2HCl = 2NaCl + H_2\uparrow$$

$$2Al + 6HCl = 2AlCl_3 + 3H_2\uparrow$$

$$3Ca + 2H_3PO_4 = Ca_3(PO_4)_2 + 3H_2\uparrow$$

$$3Zn + 2H_3PO_4 = Zn_3(PO_4)_2 + 3H_2\uparrow$$

$$2Al + 3H_2SO_4 = Al_2(SO_4)_3 + 3H_2\uparrow$$

$$MgO + H_2SO_4 = MgSO_4 + H_2O$$

```
Zn + 2HCl = ZnCl_2 + H\uparrow
Mg + H_2SO_4 = MgSO_4 + H_2\uparrow
NaCl + HCl =
Na_2SO_4 + HC1
Fe(OH)_3 + 3HNO_3 = Fe(NO_3)_3 + 3H_2O
3Zn + 8HNO_3 = 3Zn(NO_3)_2 + 2NO + 4H_2O
CaO + 2HCl = CaCl_2 + H_2O
Fe_2O_3 + 6HC1 = 2FeCl_3 + 3H_2O
Fe_2O_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 3H_2O
3Li_2O + 2H_3PO_4 = 2Li_3PO_4 + 3H_2O
3MgO + 2H_3PO_4 = Mg_3(PO_4)_2 + 3H_2O
Al_2O_3 + 3H_2SO_4 = Al_2 (SO_4)_3 + 3H_2O_3
Cu + HCl =
Au + H_2SO_4 =
H_3PO_4 + H_2SO_4 =
Na_2CO_3 + 2HC1 = 2Na C1 + CO_2 \uparrow + H_2O
NaCl_{(TB.)} + HNO_{3(KIIIHII.)} = NaNO_{3} + HC1
Mg + 2HCl = MgCl_2 + H_2\uparrow
3Mg + 2H_3PO_4 = Mg_3(PO_4)_2 + 3H_2\uparrow
```

Вариант 13 ВаОа + А IaO

 $B_2O_3 + AI_2O_3 \rightarrow$

 $B_2O_3 + Fe(OH)_3 \rightarrow$

 $SO_3 + NaOH \rightarrow$

 $SO_3 + FeO \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

 $CO_2 + Zn(OH)_2 \rightarrow$

 $CO_2+NaOH \rightarrow$

 $N_2O_5 + Cr_2O_3 \rightarrow$

 $N_2O_5 + AI(OH)_3 \rightarrow$

 $N_2O_5 + CaO \rightarrow$

 $P_2O_5 + Zn(OH)_2 \rightarrow$

 $P_2O_5 + MgO \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

КИСЛОТНЫЕ ОКСИДЫ

Вариант 14

 $P_2O_5 + Cr_2O_3 \rightarrow$

 $P_2O_5 + AI(OH)_3 \rightarrow$

 $P_2O_5 + MgO \rightarrow$

 $P_2O_5 + Zn(OH)_2 \rightarrow$

 $P_2O_5 + LiOH \rightarrow$

 $CO_2 + Zn(OH)_2 \rightarrow$

 $CO_2+NaOH \rightarrow$

 $N_2O_5 + Cr_2O_3 \rightarrow$

 $N_2O_5 + AI(OH)_3 \rightarrow$

 $N_2O_5 + CaO \rightarrow$

 $\begin{array}{c} B_2O_3 + AI_2O_3 \rightarrow \\ B_2O_3 + Fe(OH)_3 \rightarrow \\ SO_3 + NaOH \rightarrow \\ SO_3 + FeO \rightarrow \\ SO_3 + H_2O \rightarrow \\ Mn_2O_7 + Fe(OH)_3 \rightarrow \\ Mn_2O_7 + MgO \rightarrow \end{array}$

кислотные оксиды

Вариант 15 $SO_3 + Fe(OH)_3 \rightarrow$ $SO_3 + Zn(OH)_2 \rightarrow$ $B_2O_3 + MgO \rightarrow$ $B_2O_3 + Zn(OH)_2 \rightarrow$ $B_2O_3 + NaOH \rightarrow$ $B_2O_3 + H_2O \rightarrow$ $CO_2 + Zn(OH)_2 \rightarrow$ $CO_2+NaOH \rightarrow$ $N_2O_5 + Cr_2O_3 \rightarrow$ $N_2O_5 + AI(OH)_3 \rightarrow$ $N_2O_5 + CaO \rightarrow$ $Mn_2O_7 + AI_2O_3 \rightarrow$ $Mn_2O_7 + Fe(OH)_3 \rightarrow$ $Mn_2O_7 + MgO \rightarrow$ $P_2O_5 + Cr_2O_3 \rightarrow$ $P_2O_5 + AI(OH)_3 \rightarrow$

кислотные оксиды

Вариант 16 $Mn_2O_7 + AI_2O_3 \rightarrow$ $Mn_2O_7 + Zn(OH)_2 \rightarrow$ $Mn_2O_7 + NaOH \rightarrow$ $Mn_2O_7 + K_2O \rightarrow$ $Mn_2O_7 + H_2O \rightarrow$ $P_2O_5 + H_2O \rightarrow$ $P_2O_5 + Na_2O \rightarrow$ $CO_2 + Zn(OH)_2 \rightarrow$ CO₂+ NaOH → $N_2O_5 + Cr_2O_3 \rightarrow$ $N_2O_5 + AI(OH)_3 \rightarrow$ $N_2O_5 + CaO \rightarrow$ $P_2O_5 + MgO \rightarrow$ $P_2O_5 + Zn(OH)_2 \rightarrow$ $B_2O_3 + K_2O \rightarrow$ $B_2O_3 + MgO \rightarrow$ $B_2O_3 + Zn(OH)_2 \rightarrow$ $B_2O_3 + NaOH \rightarrow$

кислотные оксиды

Вариант 17

 $N_2O_5 + Cr_2O_3 \rightarrow$ $N_2O_5 + AI(OH)_3 \rightarrow$ $N_2O_5 + Be(OH)_2 \rightarrow$ $N_2O_5 + LiOH \rightarrow$ $N_2O_5 + H_2O \rightarrow$ $P_2O_5 + H_2O \rightarrow$ $P_2O_5 + Na_2O \rightarrow$ $CO_2 + Zn(OH)_2 \rightarrow$ $CO_2+ NaOH \rightarrow$ $N_2O_5 + Cr_2O_3 \rightarrow$ $N_2O_5 + AI(OH)_3 \rightarrow$ $N_2O_5 + CaO \rightarrow$ $Mn_2O_7 + AI_2O_3 \rightarrow$ $Mn_2O_7 + Fe(OH)_3 \rightarrow$ $Mn_2O_7 + MgO \rightarrow$ $Mn_2O_7 + Zn(OH)_2 \rightarrow$

кислотные оксиды

Вариант 18

 $N_2O_3 + ZnO \rightarrow$

 $B_2O_3 + MgO \rightarrow$

 $N_2O_3 + Fe(OH)_3 \rightarrow$

 $N_2O_3+BaO \rightarrow$

 $N_2O_3 + Zn(OH)_2 \rightarrow$

 $N_2O_3+NaOH \rightarrow$

 $N_2O_3 + FeO \rightarrow$

 $N_2O_3 + H_2O \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

 $B_2O_3 + Zn(OH)_2 \rightarrow$

 $B_2O_3 + NaOH \rightarrow$

 $N_2O_5 + AI(OH)_3 \rightarrow$

 $N_2O_5 + CaO \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

кислотные оксиды

Вариант 19

 $CO_2+AI_2O_3 \rightarrow$

 $CO_2 + Fe(OH)_3 \rightarrow$

 $CO_2+MgO \rightarrow$

 $CO_2 + K_2O \rightarrow$

 $CO_2 + H_2O \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

 $N_2O_5 + Cr_2O_3 \rightarrow$

```
\begin{array}{c} N_2O_5 + AI(OH)_3 \rightarrow \\ N_2O_5 + CaO \rightarrow \\ Mn_2O_7 + AI_2O_3 \rightarrow \\ Mn_2O_7 + Fe(OH)_3 \rightarrow \\ Mn_2O_7 + MgO \rightarrow \\ Mn_2O_7 + Zn(OH)_2 \rightarrow \\ Mn_2O_7 + Zn(OH)_2 \rightarrow \end{array}
```

 $Mn_2O_7 + NaOH \rightarrow$

кислотные оксиды

Вариант 20

 $SO_2 + Cr_2O_3 \rightarrow$

 $SO_2 + AI(OH)_3 \rightarrow$

 $SO_2+MgO \rightarrow$

 $SO_2+Zn(OH)_2 \rightarrow$

 $SO_2 + LiOH \rightarrow$

 $SO_2+ H_2O \rightarrow$

 $SO_2 + Na_2O \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

 $N_2O_5 + Cr_2O_3 \rightarrow$

 $N_2O_5 + AI(OH)_3 \rightarrow$

 $N_2O_5 + CaO \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

кислотные оксиды

Вариант 21

 $SiO_2 + ZnO \rightarrow$

 $SiO_2 + Fe(OH)_3 \rightarrow$

 $SiO_2+ BaO \rightarrow$

 $SiO_2 + Zn(OH)_2 \rightarrow$

 $SiO_2 + NaOH \rightarrow$

 $SiO_2 + FeO \rightarrow$

 $SiO_2 + H_2O \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

 $N_2O_5 + Cr_2O_3 \rightarrow$

 $N_2O_5 + AI(OH)_3 \rightarrow$

 $N_2O_5 + CaO \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

Вариант 22

 $B_2O_3 + AI_2O_3 \rightarrow$

 $B_2O_3 + Fe(OH)_3 \rightarrow$

 $B_2O_3 + MgO \rightarrow$

 $B_2O_3 + Zn(OH)_2 \rightarrow$

 $B_2O_3 + NaOH \rightarrow$

 $B_2O_3 + K_2O \rightarrow$

 $B_2O_3 + H_2O \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

кислотные оксиды

Вариант 23

 $P_2O_5 + Cr_2O_3 \rightarrow$

 $P_2O_5 + AI(OH)_3 \rightarrow$

 $P_2O_5 + MgO \rightarrow$

 $P_2O_5 + Zn(OH)_2 \rightarrow$

 $P_2O_5 + LiOH \rightarrow$

 $P_2O_5 + H_2O \rightarrow$

 $P_2O_5 + Na_2O \rightarrow$

 $Mn_2O_7 + AI_2O_3 \rightarrow$

 $Mn_2O_7 + Fe(OH)_3 \rightarrow$

 $Mn_2O_7 + MgO \rightarrow$

 $Mn_2O_7 + Zn(OH)_2 \rightarrow$

кислотные оксиды

Вариант 24

 $SO_3 + ZnO \rightarrow$

 $SO_3 + Fe(OH)_3 \rightarrow$

 $SO_3 + BaO \rightarrow$

 $SO_3 + Zn(OH)_2 \rightarrow$

 $SO_3 + NaOH \rightarrow$

 $SO_3 + FeO \rightarrow$

 $SO_3 + H_2O \rightarrow$

кислотные оксиды

Вариант 25

 $B_2O_3 + AI_2O_3 \rightarrow$

 $B_2O_3 + Fe(OH)_3 \rightarrow$

 $B_2O_3 + MgO \rightarrow$

 $B_2O_3 + Zn(OH)_2 \rightarrow$

 $B_2O_3 + NaOH \rightarrow$

 $B_2O_3 + K_2O \rightarrow$

 $B_2O_3 + H_2O \rightarrow$

кислотные оксиды

Вариант 26

 $P_2O_5 + Cr_2O_3 \rightarrow$

 $P_2O_5 + AI(OH)_3 \rightarrow$

 $P_2O_5 + MgO \rightarrow$

```
P_2O_5 + Zn(OH)_2 \rightarrow
```

$$P_2O_5 + LiOH \rightarrow$$

$$P_2O_5 + H_2O \rightarrow$$

$$P_2O_5 + Na_2O \rightarrow$$

Вариант 27

$$SO_3 + ZnO \rightarrow$$

$$SO_3 + Fe(OH)_3 \rightarrow$$

$$SO_3 + BaO \rightarrow$$

$$SO_3 + Zn(OH)_2 \rightarrow$$

$$SO_3 + NaOH \rightarrow$$

$$SO_3 + FeO \rightarrow$$

$$SO_3 + H_2O \rightarrow$$

кислотные оксиды

Вариант 28

$$Mn_2O_7 + AI_2O_3 \rightarrow$$

$$Mn_2O_7 + Fe(OH)_3 \rightarrow$$

$$Mn_2O_7 + MgO \rightarrow$$

$$Mn_2O_7 + Zn(OH)_2 \rightarrow$$

$$Mn_2O_7 + NaOH \rightarrow$$

$$Mn_2O_7 + K_2O \rightarrow$$

$$Mn_2O_7 + H_2O \rightarrow$$

кислотные оксиды

Вариант 29

$$N_2O_5 + Cr_2O_3 \rightarrow$$

$$N_2O_5 + AI(OH)_3 \rightarrow$$

$$N_2O_5 + CaO \rightarrow$$

$$N_2O_5 + Be(OH)_2 \rightarrow$$

$$N_2O_5 + LiOH \rightarrow$$

$$N_2O_5 + H_2O \rightarrow$$

$$N_2O_5 + Na_2O \rightarrow$$

кислотные оксиды

Вариант 30

$$N_2O_3 + ZnO \rightarrow$$

$$N_2O_3 + Fe(OH)_3 \rightarrow$$

$$N_2O_3+BaO \rightarrow$$

$$N_2O_3 + Zn(OH)_2 \rightarrow$$

$$N_2O_3+NaOH \rightarrow$$

$$N_2O_3 + FeO \rightarrow$$

$$N_2O_3 + H_2O \rightarrow$$

кислотные оксиды

Вариант 31

$$CO_2+AI_2O_3 \rightarrow$$

$$CO_2 + Fe(OH)_3 \rightarrow$$

$$CO_2+MgO \rightarrow$$

$$CO_2 + Zn(OH)_2 \rightarrow$$

```
CO<sub>2</sub>+ NaOH →
```

$$CO_2 + K_2O \rightarrow$$

$$CO_2 + H_2O \rightarrow$$

Вариант 32

$$SO_2 + Cr_2O_3 \rightarrow$$

$$SO_2 + AI(OH)_3 \rightarrow$$

$$SO_2+MgO \rightarrow$$

$$SO_2+Zn(OH)_2 \rightarrow$$

$$SO_2 + LiOH \rightarrow$$

$$SO_2+ H_2O \rightarrow$$

$$SO_2 + Na_2O \rightarrow$$

кислотные оксиды

Вариант 33

$$SiO_2 + ZnO \rightarrow$$

$$SiO_2 + Fe(OH)_3 \rightarrow$$

$$SiO_2 + Zn(OH)_2 \rightarrow$$

$$SiO_2 + NaOH \rightarrow$$

$$SiO_2 + FeO \rightarrow$$

$$SiO_2 + H_2O \rightarrow$$

кислотные оксиды

Вариант 34

$$B_2O_3 + AI_2O_3 \rightarrow$$

$$B_2O_3 + Fe(OH)_3 \rightarrow$$

$$B_2O_3 + MgO \rightarrow$$

$$B_2O_3 + Zn(OH)_2 \rightarrow$$

$$B_2O_3 + NaOH \rightarrow$$

$$B_2O_3 + K_2O \rightarrow$$

$$B_2O_3 + H_2O \rightarrow$$

кислотные оксиды

Вариант 35

$$P_2O_5 + Cr_2O_3 \rightarrow$$

$$P_2O_5 + AI(OH)_3 \rightarrow$$

$$P_2O_5 + MgO \rightarrow$$

$$P_2O_5 + Zn(OH)_2 \rightarrow$$

$$P_2O_5 + LiOH \rightarrow$$

$$P_2O_5 + H_2O \rightarrow$$

$$P_2O_5 + Na_2O \rightarrow$$

КИСЛОТНЫЕ ОКСИДЫ

Вариант 36

$$SO_3 + ZnO \rightarrow$$

$$SO_3 + Fe(OH)_3 \rightarrow$$

$$SO_3 + BaO \rightarrow$$

$$SO_3 + Zn(OH)_2 \rightarrow$$

$$SO_3 + NaOH \rightarrow$$

ТЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»

1.	Написать выражения закона действия масс для реакций:
2	а) $2NO_{\Gamma}+Cl_{2\Gamma}\to NOCl_{\Gamma};$ б) $CaCO_{3\kappa}\to CaO_{\kappa}+CO_{2\Gamma}$ Как изменится скорость реакции $2NO_{\Gamma}+O_{2\Gamma}\to 2NO_{2\Gamma},$ если уменьшить объем
∠.	реакционного сосуда в 3 раза?
3.	Температурный коэффициент скорости реакции равен 2,8. Во сколько раз возрастет
	скорость реакции при повышении температуры от 20 до 75 °C?
4.	В каком направлении сместится равновесие в
	реакции
	а) при понижении температуры? б) при повышении давления?
5.	Равновесие в системе установилось при
	следующих концентрациях:
	Определить исходные концентрации
	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 2 Написать выражения закона действия масс для реакций:
	Tumber B Bapaneman ounce and poundam.
3.	Как изменится скорость реакции
	а) при понижении температуры? б) при повышении давления?
5.	Равновесие в системе установилось при
	следующих концентрациях:
	Определить исходные концентрации
TE	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 3
1	TT
1.	Написать выражения закона действия масс для реакций:
_	
2	Как изменится скорость реакции , если
۷.	уменьшить объем реакционного сосуда в 3 раза?
3	Температурный коэффициент скорости реакции равен Во сколько раз возрастет
٦.	скорость реакции при повышении температуры от до 0 С?

4.	В каком направ			-	В
	реакцииа) при понижении температуры	2 6)		0	
_					
Э.	Равновесие в системе			установилось	при
	следующих концент	рациях			
	Определить исходные концентр	ации			<u> </u>
TE	EMA: «ХИМИЧЕСКАЯ КИНЕТИ	КА И РАВ	НОВЕСИЕ»		
		ВАРИ	Δ HT 1		
		D/M III	MII T		
1.	Написать выражения закона дей	іствия масс	с для реакций:		
2.	Как изменится скорость реак	- :шии	-		если
	Как изменится скорость реак увеличить объем реакционного	сосуда в 2	раза?		
3.	Do ekonoko pas enegyer ybenin n	TID KOHLCH	трацию	, moobi ekopoem peui	кции
4	D	yı	величилась в 4 ра	a3a?	
4.	В каком направ	влении	сместится	равновесие	В
	а) при повышении температуры	? б) при	понижении дав.	пения?	
5.	При некоторой	тем	пературе	равновесие	В
	системе	уст	ановилось при	следующих концентрац	циях:
				константу равновеси	я и
	исходную концентрацию		<u>_</u> ·		
TE	EMA: «ХИМИЧЕСКАЯ КИНЕТИ	КА И РАВ	ВНОВЕСИЕ»		
		ВАРИ	лит 5		
		DAIM	AIII J		
1.	Написать выражения закона дей	іствия масс	с для реакций:		
_					
2.	Как изменится скорость реак	:ции	-		если
	увеличить объем реакционного	сосуда в 2	раза?		
3.	Во сколько раз следует увеличи	ить концен У	трацию величилась в 4 ра	, чтобы скорость реан аза?	кции
4.	В каком направ	влении			В
	реакции			1	
	а) при повышении температуры		——— понижении дав.	пения?	
5.	При некоторой	тем	пературе	равновесие	В
	системе	уст	ановилось при	следующих концентрац	(иях:
			Найти	константу равновеси	я и
	исходную концентрацию				
_			***		
ΤE	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИ	ка и РАВ	ВНОВЕСИЕ»		

1. Написать выражения закона действия масс для реакций:

	Как изменится скорость реакции
	Во сколько раз следует увеличить концентрацию, чтобы скорость реакции
	увеличилась в 4 раза?
	В каком направлении сместится равновесие реакции
	а) при повышении температуры? б) при понижении давления?
	При некоторой температуре равновесие
	системеустановилось при следующих концентрациях Найти константу равновесия п
	исходную концентрацию
E	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 7
	Написать выражения закона действия масс для реакций:
	Как изменится скорость реакции
	уменьшить объем реакционного сосуда в 1,5 раза?
	Во сколько раз следует увеличить концентрацию, чтобы скорость реакции увеличилась в 100 раз?
	В каком направлении сместится равновесие реакции
	а) при повышении температуры? б) при повышении давления?
	Константа равновесия реакциипри некотороі
	температуре равна Найти равновесные концентрации, если
	начальные концентрации этих веществ составляли:
F	
ŀ	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 8
	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции уменьшить объем реакционного сосуда в 1,5 раза? Во сколько раз следует увеличить концентрацию, чтобы скорость реакции
	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
	ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции, если уменьшить объем реакционного сосуда в 1,5 раза? Во сколько раз следует увеличить концентрацию, чтобы скорость реакции увеличилась в 100 раз? В каком направлении сместится равновесие реакции
	ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
	ВАРИАНТ 8 Написать выражения закона действия масс для реакций: Как изменится скорость реакции

ТЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»

1.	Написать выражения закона действия масс для реакций:
2.	Как изменится скорость реакции
3.	Во сколько раз следует увеличить концентрацию, чтобы скорость реакцииувеличилась в 100 раз?
4.	В каком направлении сместится равновесие в реакции
5.	а) при повышении температуры? б) при повышении давления? Константа равновесия реакции при некоторой температуре равна Найти равновесные концентрации, если начальные концентрации этих веществ составляли:
TE	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 10
1.	Написать выражения закона действия масс для реакций:
	На сколько градусов следует повысить температуру системы, чтобы скорость , протекающей в ней реакции возросла в раз (γ =)? Во сколько раз следует увеличить давление, чтобы скорость образования по реакции увеличилась
4.	в 100 раз? В каком направлении сместится равновесие в реакции
5.	а) при понижении температуры? б) при понижении давления? Константа равновесия реакции при некоторой температуре равна Найти равновесные концентрации, если начальные концентрации этих веществ составляли:
	ТЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 11
1.	Написать выражения закона действия масс для реакций:
2.	На сколько градусов следует повысить температуру системы, чтобы скорость , протекающей в ней реакции возросла в раз ($\gamma =$)?
3.	Во сколько раз следует увеличить давление , чтобы скорость образования по реакции увеличилась в 100 раз?

4.	В каком			
5.	реакцииа) при понижении темпе Константа равновеси температуре равна начальные концентраци	ия реакции Найти равнове	сные концентрации_	при некоторой , если
TE	ЕМА: «ХИМИЧЕСКАЯ К	ИНЕТИКА И РАВН	ЮВЕСИЕ»	
		ВАРИАН	HT 12	
1.	Написать выражения зап	кона действия масс ,	для реакций:	
	На сколько градусов протекающей в ней реак	сции возросла в	pa3 (γ =)?	· · · · · · · · · · · · · · · · · · ·
3.	Во сколько раз сл образования по в 100 раз?	реакции	давление	_, чтооы скорость увеличилась
4.	В каком реакции			
5.	а) при понижении темпе Константа равновеси температуре равна начальные концентраци	ия реакции Найти равнове	сные концентрации_	при некоторой , если
TE	ЕМА: «ХИМИЧЕСКАЯ К	ИНЕТИКА И РАВН	ЮВЕСИЕ»	
		ВАРИАН	HT 13	
2.	Написать выражения заг а) 2NO _г + Как изменится скорост реакционного сосуда в 3 Температурный коэффи скорость реакции при по	$Cl_{2r} \rightarrow NOCl_r;$ бо реакции $2NO_r + B$ раза?	$O(CaCO_{3 K} \rightarrow CaO_{K} + CaO_{K} $	сли уменьшить объем
4.	В каком	направлении	сместится	равновесие в
5.	реакции а) при понижении темпе Равновесие в системе следующих Определить исходные к	е сонцентрациях:		установилось при
TE	EMA: «ХИМИЧЕСКАЯ К			
		ВАРИАН	HT 14	
1.	Написать выражения зап	кона действия масс	для реакций:	

_

2.	Как изменится скорость реакции
2	уменьшить объем реакционного сосуда в 3 раза?
3.	Температурный коэффициент скорости реакции равен Во сколько раз возрастет ${}^{0}C^{2}$
4.	скорость реакции при повышении температуры от до 0 C? В каком направлении сместится равновесие в
5.	реакцииа) при понижении температуры? б) при повышении давления? Равновесие в системе установилось при следующих концентрациях:
	Определить исходные концентрации
TE	ЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 15
1.	Написать выражения закона действия масс для реакций:
_	
2.	Как изменится скорость реакции
3.	Температурный коэффициент скорости реакции равен Во сколько раз возрастет
4.	скорость реакции при повышении температуры от до ⁰ C? В каком направлении сместится равновесие в
5.	реакцииа) при понижении температуры? б) при повышении давления? Равновесие в системе установилось при
	следующих концентрациях:
	Определить исходные концентрации
TE	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 16
1.	Написать выражения закона действия масс для реакций:
2.	Как изменится скорость реакции
3.	увеличить объем реакционного сосуда в 2 раза? Во сколько раз следует увеличить концентрацию, чтобы скорость реакции увеличилась в 4 раза?
4.	В каком направлении сместится равновесие в
	реакцииа) при повышении температуры? б) при понижении давления?
5.	При некоторой температуре равновесие в
	системеустановилось при следующих концентрациях: Найти константу равновесия и
	исходную концентрацию .

ТЕМА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»

I. —	Написать выражения закона деиствия масс для реакции:
2.	Как изменится скорость реакции
3.	Во сколько раз следует увеличить концентрацию , чтобы скорость реакции увеличилась в 4 раза?
4.	В каком направлении сместится равновесие в реакции
5.	а) при повышении температуры? б) при понижении давления? При некоторой температуре равновесие в установилось при следующих концентрациях:
	исходную концентрацию
	МА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 18 Написать выражения закона действия масс для реакций:
_	Trainieur b bisparientis sakona generalis maee gasi peakgiin.
	Как изменится скорость реакции
4.	В каком направлении сместится равновесие в реакции
5.	а) при повышении температуры? б) при понижении давления? При некоторой температуре равновесие в системе установилось при следующих концентрациях: . Найти константу равновесия и
	исходную концентрацию
TE	MA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 19
1.	Написать выражения закона действия масс для реакций:
2.	Как изменится скорость реакции
3.	Во сколько раз следует увеличить концентрацию, чтобы скорость реакции увеличилась в 100 раз?
4.	

J.	а) при повышении температуры? б) при повышении давления?
	Константа равновесия реакциипри некоторой температуре равна Найти равновесные концентрации, если
	температуре равна Паити равновесные концентрации, если
	начальные концентрации этих веществ составляли:
TE	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 20
1.	Написать выражения закона действия масс для реакций:
2.	Как изменится скорость реакции, если
	уменьшить объем реакционного сосуда в 1,5 раза?
3.	Во сколько раз следует увеличить концентрацию, чтобы скорость реакции
	увеличилась в 100 раз?
4.	В каком направлении сместится равновесие в реакции
	а) при повышении температуры? б) при повышении давления?
5.	Константа равновесия реакциипри некоторой
	температуре равна Найти равновесные концентрации, если
	начальные концентрации этих веществ составляли:
TE	NAA SUU UUUDUU AUUUUUU AUUUUU AUUU NAA SUUN DIIONEOILE
	EMA: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ» ВАРИАНТ 21
1.	
_	ВАРИАНТ 21 Написать выражения закона действия масс для реакций:
_	ВАРИАНТ 21 Написать выражения закона действия масс для реакций:
2. 3.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3. 4.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3. 4.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3. 4.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3. 4.	ВАРИАНТ 21 Написать выражения закона действия масс для реакций: Как изменится скорость реакции
2. 3. 4.	Написать выражения закона действия масс для реакций: Как изменится скорость реакции

_

	На сколько градусов следует повысить температуру системы, чтобы скорость , протекающей в ней реакции возросла в раз (γ =)?
3.	Во сколько раз следует увеличить давление, чтобы скорость образования по реакции увеличилась в 100 раз?
4.	В каком направлении сместится равновесие в реакции
5.	а) при понижении температуры? б) при понижении давления? Константа равновесия реакции
TE	МА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 23
1.	Написать выражения закона действия масс для реакций:
2.	На сколько градусов следует повысить температуру системы, чтобы скорость ,
3.	протекающей в ней реакции возросла в раз (γ =)? Во сколько раз следует увеличить давление, чтобы скорость образования по реакции увеличилась в 100 раз?
4.	В каком направлении сместится равновесие в реакции
5.	а) при понижении температуры? б) при понижении давления? Константа равновесия реакции при некоторой температуре равна Найти равновесные концентрации, если начальные концентрации этих веществ составляли:
TE	МА: «ХИМИЧЕСКАЯ КИНЕТИКА И РАВНОВЕСИЕ»
	ВАРИАНТ 24
1.	Написать выражения закона действия масс для реакций:
2.	На сколько градусов следует повысить температуру системы, чтобы скорость , протекающей в ней реакции возросла в
3.	Во сколько раз следует увеличить давление, чтобы скорость образования по реакции увеличилась
4.	в 100 раз? В каком направлении сместится равновесие в реакции
5.	а) при понижении температуры? б) при понижении давления? Константа равновесия реакции при некоторой температуре равна Найти равновесные концентрации, если начальные концентрации этих веществ составляли:

ТЕМА: «Растворы электролитов. Гидролиз солей»

ВАРИАНТ 1

растворах между: Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: Определите среду (рН) растворов.
ВАРИАНТ
Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между:
Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: Определите среду (рН) растворов.
ВАРИАНТ
Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между:
Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: Определите среду (рН) растворов.
ВАРИАНТ
Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между:
Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: Определите среду (рН) растворов.
ВАРИАНТ
Составьте молекулярные и ионно-молекулярные уравнения реакций взаимодействия в растворах между:
Составьте молекулярные и ионно-молекулярные уравнения гидролиза солей: Определите среду (рН) растворов.

ТЕМА: «ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ *ВТОРОГО ПЕРИОДА* ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: a) ДЛЯ КИСЛОТ H_3AsO_4 И HNO_2 ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ KOH И $Ba(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ H_3AsO_4 И $Ba(OH)_2$.

- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО $Ga(OH)_3$ С РАСТВОРАМИ: a) ГИДРОКСИДА НАТРИЯ; б) СОЛЯНОЙ КИСЛОТЫ.
- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: СУЛЬФАТ НИТРИЯ, ГИДРОКСОХЛОРИД МАГНИЯ, ГИДРОСИЛИКАТ КАЛИЯ; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ *ОКСИД КАЛЬЦИЯ: ОКСИД НАТРИЯ, ВОДА, ФОСФОРНАЯ КИСЛОТА, ОКСИД ХЛОРА (VII), ГИДРОКСИД КАЛИЯ, НИТРАТ ЦИНКА.* ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ *ТРЕТЬЕГО ПЕРИОДА* ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: a) ДЛЯ КИСЛОТ H_3AsO_3 И HNO_3 ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ NaOH И $Ca(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ H_3AsO_3 И $Ca(OH)_2$.
- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО $Al(OH)_3$ С РАСТВОРАМИ: a) Γ ИДРОКСИДА НАТРИЯ; б) СОЛЯНОЙ КИСЛОТЫ.
- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: СУЛЬФАТ МАГНИЯ, ГИДРОКСОСУЛЬФАТ МАГНИЯ, ДИГИДРОФОСФАТ КАЛИЯ; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ ГИДРОКСИД КАЛЬЦИЯ: ОКСИД НАТРИЯ, ВОДА, ФОСФОРНАЯ КИСЛОТА, ОКСИД ХЛОРА (VII), ГИДРОКСИД КАЛИЯ, НИТРАТ ЦИНКА. ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ s- И p-ЭЛЕМЕНТОВ ЧЕТВЕРТОГО ПЕРИОДА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: a) ДЛЯ КИСЛОТ H_3PO_4 И HJO_3 ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ RbOH И $Mg(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ H_3PO_4 И $Mg(OH)_2$.
- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО Zn(OH)₂ C PACTBOPAMI: a) ГИДРОКСИДА КАЛИЯ; б) СЕРНОЙ КИСЛОТЫ.

- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: ХЛОРИД МАГНИЯ, ГИДРОКСОСУЛЬФАТ ЖЕЛЕЗА (II), ГИДРОФОСФАТ КАЛИЯ; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ *ОКСИД НАТРИЯ: ОКСИД КАЛЬЦИЯ, ВОДА, ФОСФОРНАЯ КИСЛОТА, ОКСИД ХЛОРА (VII), ГИДРОКСИД КАЛИЯ, НИТРАТ ЦИНКА.* ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ s- И p-ЭЛЕМЕНТОВ ПЯТОГО ПЕРИОДА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: а) ДЛЯ КИСЛОТ H_3PO_3 И $HClO_3$ ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ CsOH И $Fe(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ H_3PO_3 И $Fe(OH)_2$.
- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО $Cr(OH)_3$ С РАСТВОРАМИ: a) $\Gamma U \Box POKCU \Box A$ НАТРИЯ; б) COЛЯНОЙ КИСЛОТЫ.
- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: *КАРБОНАТ МАГНИЯ*, *ГИДРОКСОСУЛЬФАТ ЖЕЛЕЗА (III)*, *ГИДРОСУЛЬФАТ КАЛИЯ*; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ *ОКСИД МАГНИЯ*: *ОКСИД КАЛЬЦИЯ*, *ВОДА*, *ФОСФОРНАЯ КИСЛОТА*, *ОКСИД ХЛОРА* (VII), ГИДРОКСИД КАЛИЯ, НИТРАТ ЦИНКА. ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ s- И p-ЭЛЕМЕНТОВ ПЯТОГО ПЕРИОДА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: а) ДЛЯ КИСЛОТ H_2S И $HClO_4$ ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ LiOH И $Ni(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ $HClO_4$ И $Ni(OH)_2$.
- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО $Pb(OH)_2$ С РАСТВОРАМИ: a) $\Gamma U J P O K C U J A H A T P U H F;$ б) C O J J H O J K U C J O T D J C A T D

- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: СУЛЬФАТА ЖЕЛЕЗА (II), ДИГИДРОКСОСУЛЬФАТ ЖЕЛЕЗА (III), ГИДРОКАРБОНАТ НАТРИЯ; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ *ОКСИД БАРИЯ*: *ОКСИД ЖЕЛЕЗА (II)*, *ВОДА*, *СЕРНАЯ КИСЛОТА*, *ОКСИД СЕРЫ (VI)*, *ГИДРОКСИД КАЛИЯ*, *ХЛОРИД ЦИНКА*. ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

- 1. НАПИШИТЕ ФОРМУЛЫ ОКСИДОВ s- И p-ЭЛЕМЕНТОВ ПЕРВОГО ПЕРИОДА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ, УЧИТЫВАЯ ИХ ВЫСШУЮ ВАЛЕНТНОСТЬ, И УКАЖИТЕ ХИМИЧЕСКИЙ ХАРАКТЕР ОКСИДОВ.
- 2. НАПИШИТЕ: а) ДЛЯ КИСЛОТ H_2SO_4 И $HClO_2$ ВОЗМОЖНЫЕ КИСЛОТНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ КИСЛОТНЫХ ОКСИДОВ; б) ДЛЯ ОСНОВАНИЙ CsOH И $Cu(OH)_2$ ВОЗМОЖНЫЕ ОСНОВНЫЕ ОСТАТКИ, УКАЗАВ ИХ ЗАРЯДНОСТЬ И ФОРМУЛЫ ОСНОВНЫХ ОКСИДОВ; в) ГРАФИЧЕСКИЕ ФОРМУЛЫ H_2SO_4 И $Cu(OH)_2$.
- 3. ЗАПИШИТЕ УРАВНЕНИЯ РЕАКЦИЙ ВЗАИМОДЕЙСТВИЯ АМФОТЕРНОГО Ве(OH)₂ С РАСТВОРАМИ: a) ГИДРОКСИДА НАТРИЯ; б) СОЛЯНОЙ КИСЛОТЫ.
- 4. СОСТАВЬТЕ ЭМПИРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ФОРМУЛЫ СЛЕДУЮЩИХ СОЛЕЙ: *СУЛЬФАТА ЖЕЛЕЗА (III)*, *ГИДРОКСОКАРБОНАТА МЕДИ (II)*, *ГИДРОКАРБОНАТА КАЛЬЦИЯ*; УКАЖИТЕ, К КАКОМУ ТИПУ ОТНОСЯТСЯ ЭТИ СОЛИ.
- 5. С КАКИМИ ИЗ ПЕРЕЧИСЛЕННЫХ ВЕЩЕСТВ МОЖЕТ РЕАГИРОВАТЬ ОКСИД БАРИЯ: ОКСИД НИКЕЛЯ (II), ВОДА, СОЛЯНАЯ КИСЛОТА, ОКСИД СЕРЫ (IV), ГИДРОКСИД РУБИДИЯ, ('УЛЬФАТ НАТРИЯ. ЗАПИШИТЕ УРАВНЕНИЯ ВОЗМОЖНЫХ РЕАКЦИЙ И НАЗОВИТЕ ПРОДУКТЫ РЕАКЦИЙ.

«Теория электролитической диссоциации. Водные растворы электролитов»

ВАРИАНТ №1

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃. 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow$

ВАРИАНТ №2

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂, Pb(OH)₂, H₃PO₄, AIOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + SO_3 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$$

ВАРИАНТ №3

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений NH 4(NO₃)₂, Mg(OH)₂, RbCI, NaHCO₃, H₂SO₃. 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

```
NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + N_2O_5 \rightarrow NAOH +
```

ВАРИАНТ №4

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Cr(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$AgOH + Ca(OH)_2 \rightarrow$	$AgOH + MgCI_2 \rightarrow$
$AgOH + Sn(OH)_2 \rightarrow$	$AgOH + SO_3 \rightarrow$
$AgOH +H_2SO_4 \rightarrow$	$AgOH + ZnO \rightarrow$

ВАРИАНТ №5

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений CrCl₂, Mg(OH)₂,RbNO₃, NaHSO₃. 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

```
NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow
```

ВАРИАНТ №6

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Fe(NO₃)₂, Cr(OH)₂, H₃BO₃, NiOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + SO_3 \rightarrow$$

ВАРИАНТ №7

- 1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Cr(MnO₄)₂, Mg(OH)₂, RbOH, LiHCO₃.
- 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NaOH + Cu(OH)_2 \rightarrow NaOH + Pb(SO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + H_2CO_3 \rightarrow NaOH + N_2O_5 \rightarrow$$

ВАРИАНТ №8

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Cr(NO₃)₂, Pb(OH)₂, H₂SO₄, AIOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + BaCI_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + N_2O_5 \rightarrow KOH + H_2SO_4 \rightarrow KOH + PbO \rightarrow BAPИAHT №9$$

- 1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений $Ni(NO_3)_2$, $Mq(OH)_2$, RbOH, $KHCO_3$.
- 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + N_2O_5 +$$

ВАРИАНТ №10

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений NaNO₃, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Cr(OH)_3 \rightarrow$	$KOH + BaCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + Cr_2O_3 \rightarrow$
KOH $+H_3PO_4 \rightarrow$	$KOH + ZnO \rightarrow$

ВАРИАНТ №11

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃.

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

NaOH + Ni(OH)₂ \rightarrow NaOH + Pb(NO₃)₂ \rightarrow NaOH + Ba(OH)₂ \rightarrow NaOH + SnO \rightarrow

$$NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow$$

ВАРИАНТ №12

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₂)₂. Pb(OH)₂, H₃BO₃, Cu(HSO₄), AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Pb(OH)_2 \rightarrow$	$KOH + ZnCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + SO_3 \rightarrow$
$KOH +H_2SO_3 \rightarrow$	$KOH + CaO \rightarrow$

ВАРИАНТ №14

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Al(OH)₃, KHCO₃ FeCl₃.
2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Mg(OH)_2 \rightarrow NaOH + Be(NO_3)_2 \rightarrow$

NaOH + Ba(OH)₂ \rightarrow NaOH +SnO \rightarrow NaOH +P₂O₅ \rightarrow

ВАРИАНТ №15

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂, Pb(OH)₂, H₃PO₄, AIOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $KOH + Ca(OH)_2 \rightarrow KOH + MgCl_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$

ВАРИАНТ №16

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений $Ni(NO_3)_2$, $Mq(OH)_2$, RbOH, $KHCO_3$.

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

 $NaOH + Ni(OH)_2 \rightarrow NaOH + Pb(NO_3)_2 \rightarrow NaOH + Ba(OH)_2 \rightarrow NaOH + SnO \rightarrow NaOH + H_2SO_3 \rightarrow NaOH + N_2O_5 \rightarrow$

ВАРИАНТ №17

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Zn(NO₃)₂, Pb(OH)₂, H₃BO₃, FeOHSO₄, AI(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$NH_4OH + Ca(OH)_2 \rightarrow$	$NH_4OH + MgCI_2 \rightarrow$
$NH_4OH + Sn(OH)_2 \rightarrow$	$NH_4OH + SO_3 \rightarrow$
$NH_4OH + H_2SO_4 \rightarrow$	$NH_4OH + ZnO \rightarrow$

ВАРИАНТ №18

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений NaNO₃, Be(OH)₂,KOH, LiHCO₃, H₂SO₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

LiOH + Ni(OH)₂
$$\rightarrow$$
 LiOH + Pb(NO₃)₂ \rightarrow LiOH + SnO \rightarrow LiOH + H₂SO₃ \rightarrow LiOH + N₂O₅ \rightarrow

ВАРИАНТ №19

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ca(NO₃)₂, Pb(OH)₂, H₃PO₄, AIOHSO₄, Fe(HSO₄)₃ 2.Напишите уравнения возможных реакций в ионно-молекулярном виде:

$$KOH + Ca(OH)_2 \rightarrow KOH + MgCI_2 \rightarrow KOH + Sn(OH)_2 \rightarrow KOH + H_2SO_4 \rightarrow KOH + ZnO \rightarrow$$

ВАРИАНТ №20

1.Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ni(NO₃)₂, Mq(OH)₂, RbOH, KHCO₃.

2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$NaOH + Ni(OH)_2 \rightarrow$	$NaOH + Pb(NO_3)_2 \rightarrow$
NaOH + Ba(OH) ₂ \rightarrow	$NaOH + SnO \rightarrow$
NaOH $+H_2SO_3 \rightarrow$	$NaOH + N_2O_5 \rightarrow$

ВАРИАНТ №21

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Ca(OH)_2 \rightarrow$	$KOH + MgCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + SO_3 \rightarrow$
$KOH +H_2SO_4 \rightarrow$	$KOH + ZnO \rightarrow$

ВАРИАНТ №22

1. Назовите следующие соединения, напишите уравнения диссоциации, приведите графические формулы этих соединений Ba(NO₃)₂, Pb(OH)₂, H₃PO₄, FeOHSO₄, AI(HSO₄)₃ 2. Напишите уравнения возможных реакций в ионно-молекулярном виде:

$KOH + Ca(OH)_2 \rightarrow$	$KOH + MgCI_2 \rightarrow$
$KOH + Sn(OH)_2 \rightarrow$	$KOH + SO_3 \rightarrow$
KOH $+H_2SO_4 \rightarrow$	$KOH + ZnO \rightarrow$

Самостоятельная работа

Самостоятельная работа		
Town ANSV		
Тема: АМУ		
1. Определите абсолютную массу молекулы H ₂ O		
2. Чему равны массовые доли (%) элементов в молекуле Fe(OH) ₃		
3. Уравняйте реакцию: $Al_2(SO_4)_3 + BaCO_3 = Al_2(CO_3)_3 + BaSO_4$		
Покажите выполнение закона сохранения массы в этой реакции		
4. Какой объём при н.у. занимают 11г. углекислого газа		
5. Какая масса воды образуется при сгорании 1,0г. глюкозы C ₆ H ₁₂ O ₆ ?		
Уравнение реакции $C_6H_{12}O_6 + O_2 = CO_2 + H_2O$		
Тема: АМУ		
1.Определите абсолютную массу молекулы НСІ		
2. Чему равны массовые доли (%) элементов в молекуле Fe(OH)2		
3. Уравняйте реакцию: Na ₂ SO ₄ + HCl = NaCl + H ₂ SO ₄		
Покажите выполнение закона сохранения массы в этой реакции		
4. Какой объём при н.у. занимают 22г. углекислого газа		
5. Сколько граммов FeSO ₄ образуется при взаимодействии раствора CuSO ₄ с		
железом, если при этом образуется 128г. меди по уравнению:		
$CuSO_4 + Fe = FeSO_4 + Cu$		
Тема: АМУ		
1.Определите абсолютную массу молекулы H ₂ SO ₄		
2. Чему равны массовые доли (%) элементов в молекуле Са(ОН)2		
$3.$ Уравняйте реакцию: $Al_2(SO_4)_3 + BaCl_2 = AlCl_3 + BaSO_4$		
Покажите выполнение закона сохранения массы в этой реакции		
4. Какой объём при н.у. занимают 19г. F ₂		
5. Определите эквивалент : Al(OH) ₃ , NaNO ₃ , H ₃ PO ₄ , Fe.		
5. 6 ip e gesint e 5 kb ib base in . 1 ii (611)3, 1 tat (63, 12)1 64, 1 e.		
Тема: АМУ		
1.Определите абсолютную массу молекулы HNO ₃		
2. Чему равны массовые доли (%) элементов в молекуле Ва(ОН) ₂		
$3.$ Уравняйте реакцию: $Fe_2(SO_4)_3 + BaCO_3 = Fe_2(CO_3)_3 + BaSO_4$		
Покажите выполнение закона сохранения массы в этой реакции		
4. Какой объём при н.у. занимают 1,4г. N ₂		
5. Рассчитайте относительную плотность бромоводорода по водороду		
3. Гассчитаите относительную плотность оромоводорода по водороду		
Тема: АМУ		
1.Определите абсолютную массу молекулы HNO ₂		
2. Чему равны массовые доли (%) элементов в молекуле HCl		
3. Уравняйте реакцию: K ₂ SO ₄ + HF = KF + H ₂ SO ₄		
Покажите выполнение закона сохранения массы в этой реакции		
4. Какой объём при н.у. занимают 22г. углекислого газа		
5. Определите молярную массу газа, если его плотность по воздуху равна 2,5.		

Тема: АМУ
1.Определите абсолютную массу молекулы H ₂ SO ₃
2. Чему равны массовые доли (%) элементов в молекуле Ca(NO ₂) ₂
3. Уравняйте реакцию: LiBr + BaCO ₃ = Li ₂ CO ₃ + BaBr ₂
Покажите выполнение закона сохранения массы в этой реакции
4. Какой объём при н.у. занимают 19г. F ₂
5.Определите эквивалент : NaOH, Ba(NO ₃) ₂ , Al.
Тема: АМУ
1.Определите абсолютную массу молекулы НБ
2. Чему равны массовые доли (%) элементов в молекуле ВаС12
$3.$ Уравняйте реакцию: $CsC1 + BaCO_3 = Cs_2CO_3 + BaCl_2$
Покажите выполнение закона сохранения массы в этой реакции
4. Какой объём при н.у. занимают 1,4г. N ₂
5. Определите объём кислорода, необходимый для получения 40г. оксида меди (II)
окислением меди: $Cu + O_2 = CuO$
Тема: АМУ
1.Определите абсолютную массу молекулы НВг
2. Чему равны массовые доли (%) элементов в молекуле Fe(NO ₃) ₃
3. Уравняйте реакцию: $H_2SO_4 + Ba(NO_3)_2 = HNO_3 + BaSO_4$
Покажите выполнение закона сохранения массы в этой реакции
4. Какой объём при н.у. занимают 0,6моль. любого газа
5. Какая масса воды образуется при сгорании 1,0г. глюкозы С ₆ H ₁₂ O ₆ ?
Уравнение реакции $C_6H_{12}O_6 + O_2 = CO_2 + H_2O$
T ANG
Тема: АМУ
1. Определите абсолютную массу молекулы HI
2. Чему равны массовые доли (%) элементов в молекуле Fe(NO ₂) ₂
3. Уравняйте реакцию: Na ₂ SO ₄ + KOH = NaOH + H ₂ SO ₄
Покажите выполнение закона сохранения массы в этой реакции
4. Какой объём при н.у. занимают 22г. углекислого газа 5. Сколько граммов FeSO ₄ образуется при взаимодействии раствора CuSO ₄ с
железом, если при этом образуется 128г. меди по уравнению:
$CuSO_4 + Fe = FeSO_4 + Cu$
Cu504 - 10 10504 - Cu
Тема: АМУ
1.Определите абсолютную массу молекулы НІ
2. Чему равны массовые доли (%) элементов в молекуле Fe(NO ₂) ₂
3. Уравняйте реакцию: $Li_2SO_4 + HNO_3 = LiNO_3 + H_2SO_4$
Покажите выполнение закона сохранения массы в этой
реакции
4. Какой объём при н.у. занимают 22г. углекислого газа
5. Сколько молей составляют и сколько молекул содержат
280г. железа
Тема: АМУ
TOMA. FXIVI 7

- 1.Определите абсолютную массу молекулы HF
- 2. Чему равны массовые доли (%) элементов в молекуле BaCl₂
- 3. Уравняйте реакцию: $CsCl + BaCO_3 = Cs_2CO_3 + BaCl_2$

Покажите выполнение закона сохранения массы в этой реакции

- 4. Какой объём при н.у. занимают 1,4г. N₂
- 5. Определите объём кислорода, необходимый для получения 40г. оксида меди (II) окислением меди: $Cu + O_2 = CuO$

Тема: АМУ

- 1. Определите абсолютную массу молекулы НВг
- 2. Чему равны массовые доли (%) элементов в молекуле Fe(NO₃)₃
- $3. \text{Уравняйте реакцию: } \text{H}_2\text{SO}_4 + \text{Ba}(\text{NO}_3)_2 = \text{HNO}_3 + \text{BaSO}_4$

Покажите выполнение закона сохранения массы в этой реакции

- 4. Какой объём при н.у. занимают 0,6моль. любого газа
- 5. Какая масса воды образуется при сгорании 1,0 г. глюкозы $C_6H_{12}O_6$?
- Уравнение реакции $C_6H_{12}O_6 + O_2 = CO_2 + H_2O$

Самостоятельная работа студентов по дисциплине:

1. Программой предусматривается самостоятельное освоение части разделов курса с помощью рекомендуемой литературы. Студенты должны работать с имеющимися учебниками, учебным пособием и конспектами лекций.

Работа с литературой является одним из основных видов самостоятельной деятельности студентов. Рекомендуемую основную литературу нужно получить в библиотеке. Самостоятельная работа студентов во многом может быть облегчена использованием интернета. На самостоятельное изучение (более детальную проработку) выносятся темы, частично рассмотренные в лекциях. Часть тем студенты рассматривают самостоятельно.

Критерии оценки за самостоятельную работу студента:

- 0 баллов подготовлен некачественный доклад: тема не раскрыта, в изложении доклад отсутствует четкая структура, логическая последовательность, отражающая сущность раскрываемой темы:
- 1 балл подготовлен некачественный доклад: тема раскрыта, однако в изложении доклада отсутствует четкая структура, отражающая сущность раскрываемой темы;
- 2 балла подготовлен качественный доклад: тема хорошо раскрыта, в изложении доклада прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемой темы. Однако студент не осознает роль и место раскрываемого вопроса в общей схеме перспективных процессов нефтепереработки;
- 3 балла подготовлен качественный доклад: тема хорошо раскрыта, в изложении доклада прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемой темы. Студент хорошо апеллирует терминами науки. Однако затрудняется ответить на дополнительные вопросы по теме доклада (1-2 вопроса).
- 4 балла подготовлен качественный доклад: тема хорошо раскрыта, в изложении доклада прослеживается четкая структура логическая последовательность, отражающая сущность раскрываемой темы. Студент свободно апеллирует терминами науки. Однако на дополнительные вопросы по теме доклада (1-2 вопроса) отвечает только с помощью преподавателя.
- 5 баллов подготовлен качественный доклад: тема хорошо раскрыта, в изложении доклада прослеживается четкая структура логическая последовательность, отражающая сущность

раскрываемой темы. Студент свободно апеллирует терминами науки, демонстрирует авторскую позицию. Способен ответить на дополнительные вопросы по теме доклада (1-2 вопроса).

Таблица 1 - Система распределения баллов по видам семестровых отчетностей:

Виды отчетностей		Баллы (max)		
Оценка деятельности	Аттестации	1 атт.	2 атт.	Всего
студента в процессе обучения(до 100	Текущий контроль	15	15	30
баллов)	Рубежный контроль	20	20	40
	Самостоятельная работа	0	15	15
	Посещаемость	5	10	15
ИТОГО		40	60	100

Таблица 2 - Критерии оценки:

Итоговый рейтинг в	Итоговая оценка на экзамен	Итоговая оценка на зачет
	Поговая оценка на экзамен	итоговая оценка на зачет
баллах		
81-100	«Отлично»	Зачтено
61-80	«Хорошо»	
41-60	«Удовлетворительно»	
Менее 41 балла	«Неудовлетворительно»	Не зачтено
	_	

Оценочные баллы по темам лабораторного практикума в рамках текущих аттестаций:

1-я текущая аттестация:

- 1. Теоретические основы аналитической химии. Химический анализ и стехиометрические законы химии 3 балла
- 2. Химическая кинетика и химическое равновесие 3 балла
- 3. Кислотно-основные свойства веществ. Гидролиз. Качественный анализ, его методы 6 баллов
- 4. Химические методы количественного анализа. Гравиметрический (весовой) анализ 3 балла

2-я текущая аттестация:

- 1. Титриметрический (объемный) анализ.
 - 2. Кислотно-основное титрование (метод нейтрализации) -3 балла
 - 3. Окислительно-восстановительное титрование (редокс-методы) 3 балла
 - 4. Комплексно метрическое титрование (хелатометрия) Збалла
 - 5. Электрохимические методы анализа. Электровесовой анализ -3 балла
 - 6. Объемные электрохимические методы анализа 3 балла

Критерии оценки по темам лабораторного практикума в рамках текущих аттестаций:

По лабораторным работам №1. 2, 4. 5, 6. 7. 8. 9:

- 0 баллов не выполнена лабораторная работа в полном объеме;
- 1 балл лабораторная работа выполнена частично, результаты работы не обсуждены с преподавателем;
- 2 балла лабораторная работа выполнена частично, результаты работы частично обсуждены с преподавателем;
- 3 балла лабораторная работа выполнена полностью, результаты работы полностью обсуждены с преподавателем.

По лабораторной работе №3:

- 0 баллов не выполнена лабораторная работа в полном объеме;
- 1 балл лабораторная работа выполнена частично в части хроматографического анализа бензинов, результаты работы не обсуждены с преподавателем;
- 2 балла лабораторная работа выполнена частично, результаты работы частично обсуждены с преподавателем;
- 3 балла лабораторная работа выполнена полностью в части хроматографического анализа бензинов, результаты работы полностью обсуждены с преподавателем;
- 4 балла в дополнение к предыдущему пункту частично выполнен технический анализ бензинов прямой перегонки нефти, результаты работы не обсуждены с преподавателем;
- 5 баллов в дополнение к предыдущему пункту полностью выполнен технический а на ли бензинов прямой перегонки нефти, результаты работы частично обсуждены с преподавателем;
- 6 баллов лабораторная работа выполнена полностью, результаты работы полностью обсуждены с преподавателем.

Оценочные баллы в рамках 1 и 2 рубежной аттестации:

1-вопрос - 6 баллов

2-вопрос - 7 баллов

3-вопрос - 7 баллов

Критерии оценки в рамках 1 и 2 рубежной аттестаций:

0 баллов - ответ на вопрос отсутствует;

- 2 балла дан недостаточно полный и недостаточно развернутый ответ, логика и последовательность изложения не всегда прослеживается; студент может конкретизировать обобщенные знания, доказав на примерах только с помощью преподавателя. Речевое оформление требует поправок, коррекции;
- 4 балла дан полный, но недостаточно последовательный ответ на поставленный опрос, но при этом показано умение выделить существенные признаки, характеризующие технологический процесс с точки зрения его перспективности;
- 5 баллов дан развернутый ответ на поставленный вопрос, раскрыты основные положения темы; прослеживается четкая структура, логическая последовательность. отражающая сущность раскрываемых понятий; в ходе ответа допущены незначительные неточности;
- 6-7 баллов дан полный, развернутый ответ на поставленный вопрос, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий; ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию студента.

Критерии оценки знаний студента на экзамене

Оценка «отлично» выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений.

Оценка «хорошо» - выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя.

Оценка «удовлетворительно» - выставляется студенту, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации.

Оценка «**неудовлетворительно**» - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

Темы рефератов для самостоятельной работы студента

- 5 Ректификационное оборудование установок АВТ
- 6 Вакуумсоздающая аппаратура
- 7 Типы, назначение и расчет орошений в ректификационных колоннах
- 8 Устройство и принципа-действия реактора каталитического крекинга
- 9 Устройство и принцип действия реактора каталитическо1 о риформинга
- 10 Устройство и принцип действия реактора гидроочистки светлых дистиллятов Устройство и принцип действия реактора каталитическою алкилирования
- 11 Устройство и принцип действия реактора изомеризации