Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Минтал Серер СТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность РВОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имениакадемикаМ. Д Миллионщикова

Уникальный программный ключ:

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

«УТВЕРЖДАЮ» Первый проректорроректор по учебной работе И.Г. Гапрабеков

РАБОЧАЯПРОГРАММА

дисциплины

«Автоматизированный электропривод типовых производственных механизмов и технологических комплексов»

> Направление подготовки 13.03.02 «Электроэнергетика и электротехника»

> > Направленность (профиль)

«Электропривод и автоматика»

Квалификация

Бакалавр

Год начала подготовки 2023

1. Целии задачи освоения дисциплины

Целью преподавания дисциплины «Автоматизированный электропривод типовых производственных механизмов и технологических комплексов» (АЭПТПМиТК) является формирование у студентов необходимых знаний и умений по современному автоматизированному электрическому приводу, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности.

Задачей изучения дисциплины является подготовка специалистов, способных:

- выполнять разработку проектов автоматизированных электроприводов различного назначения:
- определять оптимальные производственно-технологические режимы работы автоматизированного электропривода типовых производственных механизмов и технологических комплексов;
- создать у студентов правильное представление о сущности происходящих в электрических приводах процессов преобразования энергии и о влиянии требований рабочих машин и технологий на выбор типа и структуры электропривода;
- проводить теоретические и экспериментальные исследования, обработку и обобщение результатов исследования объектов электроэнергетики:
- создать у студентов правильное представление о сущности происходящих в электрических приводах процессов преобразования энергии и о влиянии требований рабочих машин и технологий на выбор типа и структуры электропривода;
- овладеть основами расчета установившихся режимов электроэнергетических систем и сетей, ознакомление с методами энергосбережения в электроэнергетических системах

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части программы бакалавриата с присвоением квалификации «Бакалавр» по направлению подготовки 13.03.02"Электроэнергетика и электротехника". В свою очередь, данный курс, помимо самостоятельного значения, является предшествующей дисциплиной для курсов: микропроцессорные средства в электроприводах и технологических комплексах, введение в специальность, система управления электроприводов, элементы систем автоматики.

3. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций и индикаторов их достижения:

профессиональные компетенции:

- ОПК-3. Способен использовать методы анализа и моделирования электрический цепей и электрических машин.

Индикаторы достижения:

- ОПК-3.1 Использует методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока
- ОПК-3.2 Использует мет оды расчета переходных процессов в электрических цепях постоянного и переменного тока
- ОПК-3.3 Применяет знания основ теории электромагнитного поля и цепей с распределенными параметрами

- **ПК-1**. Способен участвовать в расчете показателей функционирования технологического оборудования и систем технологического оборудования объектов ПД. Индикаторы достижения:
- ПК-1.1. Определяет параметры оборудования объектов профессиональной деятельности;
- ПК-1.2.Рассчитывать режимы работы объектов профессиональной деятельности

4. Объем дисциплины и виды учебной работы

Таблица 1

Вид учебной работы		Всего часов/зач.ед.		Семестр			
				ОФО		3ФО	
		ОФО	3ФО	7	8	8	9
Контактная работа (всего)		87/3,22	32/0,88	42/1,88	45/1,33	16/0,04 4	16/0,044
В том числе:							
Лекции		42/1,61	16/0,044	21/0,94	21/0,66	8/0,22	8/0,22
Лабораторные раб	оты	45/1,61	16/0,044	21/0,94	24,066	8/0,22	8/0,22
Курсовое проекти	рование						
Самостоятельная работа		165/5,77	220/8,11	82/4,0	83/1,77	110/4,5	110/3,61
(всего)							
В том числе:							
Подготовка к лабораторным работам		65/3,0	110/5,55	41/2,0	43/1,0	55/3,0	55/2,55
Темы для самостоятельного изучения (доклад+презентация)		100/2,77	110/2,55	41/2,0	40/0,77	55/1,5	55/1,05
Вид отчетности				зачёт	экзамен	зачёт	экзамен
	ВСЕГО в	252					
Общая	часах	232					
трудоемкость ВСЕГО в							
дисциплины	зачетных	7					
	единицах			_			

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№	Наименование раздела
Π/Π	дисциплины
	семестры
1	Введение курса Автоматизированный электропривод типовых
	производственных механизмов и технологических комплексов (АЭПТПМиТК)
2	Классификация, структура АЭПТПМиТК
3	Регулирование координат АЭПТПМиТК
4	Пускозащитная аппаратура управления разомкнутых электроприводов
5	Средства управления разомкнутых электроприводов
6	Аварийные режимы и средства защиты в АЭП
7	Специальные виды защит АЭПТПМиТК
8	Типовые узлы и схемы управления ЭП с двигателями ПТ
9	Типовые узлы и схемы управления ЭП с асинхронными двигателям
10	Автоматизированный ЭП с синхронными электродвигателями
11	Технические средства замкнутых схем управления АЭПТПМиТК
12	Замкнутые схемы управления АЭПТПМиТК с ДПТ
13	Замкнутые схемы управления электроприводов с двигателями переменного тока
14	Электромашинные и статические преобразователи частоты
15	Энергосбережение в АЭП
16	Итоги курса дисциплины АЭПТПМиТК
	Итого

5.2. Лекционные занятия

ОФО 7-8 семестр, ЗФО 8-9 семестр

Разд ел	Наименование раздела дисциплины	Содержание раздела	
1	Введение курса Автоматизированный электропривод типовых производственных механизмов и технологических комплексов (АЭПТПМиТК)	Введение курса АЭПТПМиТК. Изложены блочно-модульные принципы построения унифицированных систем АЭПТПМиТК с программируемыми микроконтроллерами. Рассмотрены принципы построения систем управления механизмами, агрегатами и комплексами на базе автоматизированных электроприводов и компьютерных средств автоматизации. Приведены примеры построения АЭПТПМиТК управления многодвигательными электроприводами машин и агрегатов типовых групп технологического и транспортного оборудования, а также автоматизированных технологических комплексов базовых отраслей промышленности.	
2	Классификация, структура АЭПТПМиТК	Автоматизированный ЭП - операции управления выполняются в соответствии с требованиями технологического процесса. Операции выполняются системой управления (на оператора возлагаются функции включени и выключения ЭП). Очевидно, что автоматизированный ЭП является более эффективным и экономически целесообразным, т.к. освобождает человека от утомительного и однообразного труда, повышает производительность труда, качество	
3	Регулирование координат АЭПТПМиТК	технологического процесса. Для обеспечения требуемых режимов работы машин, производственных механизмов и самого ЭП некоторые переменные, которые характеризуют их работу, должны регулироваться. Такими переменными, часто называемыми в ЭП координатами, являются, например, скорость, ускорение, положение исполнительного органа (ИО) или любого другого механического элемента привода, ток в электрических цепях двигателей, моменты н их валу и др.	
4	Пускозащитная аппаратура управления разомкнутых электроприводов	К разомкнутым относятся электрические схемы, в которых для управления ЭП не используются обратные связи по его координатам или технологическим параметрам. Эти схемы, отличаясь простотой своей реализации, широко применяются там, где не требуется высокое качество управления движением ЭП, например, для пуска, реверса и торможения двигателей.	

ee I
_
3
,
И
м,
_
- 1

	T	ута уга 1 150/ тутуу ИПП АП а тахуууга
		что на 11,5% выше КПД АД с теми же
11	T	габаритными размерами и скоростью.
11	Технические средства замкнутых схем	Аналоговые элементы и устройства
	управления АЭПТПМиТК	управления ЭП. Дискретные элементы и
		устройства управления ЭП. Датчики скорости
		и положения в замкнутых ЭП. Современные
		замкнутые системы управления ЭП
		реализуются, как правило, на основе
		полупроводниковых элементах. В то же время
		подключение ЭД осуществляется с помощью
		рассмотренных электрических аппаратов с
		ручным и электромагнитным управлением.
12	Замкнутые схемы управления	Замкнутые схемы управления электроприводов
	АЭПТПМиТК с ДПТ	с двигателями постоянного тока по скорости
		Регулирование (ограничение) тока и момента
		двигателя постоянного тока с помощью
		нелинейной отрицательной обратной связи по
		току. Замкнутая схема электрического
		привода с двигателями постоянного тока с
		обратными связями по скорости и току
		Замкнутые электропривода с подчиненным
		регулированием координат
13	Замкнутые схемы управления	Замкнутая схема управления асинхронного
	электроприводов с двигателями	электропривода, выполненного по системе
	переменного тока	«тиристорный регулятор напряжения—
		асинхронный двигатель» (ТРН—АД)
		Замкнутый электрический привод с частотным
		управлением асинхронного двигателя
		Замкнутая схема импульсного регулирования
		скорости асинхронного двигателя с помощью
		резистора в цепи ротора
		По исторически сложившейся тенденции
		регулируемый ЭП строился главным образом с
		использованием ДПТ. В последние годы в
		связи с появлением разнообразных средств
		управления регулируемый ЭП переменного
		тока начал быстро вытеснять АЭП с ДПТ.
14	Электромашинные и статические	Законы частотного регулирования
	преобразователи частоты	Электромашинные преобразователи частоты с
		использованием синхронного генератора
		Электромашинный асинхронный
		преобразователь частоты
		Вентильно-электромашинный преобразователь
		частоты
		Частотное регулирование скорости
		значительно расширяет возможности
		асинхронных электроприводов в различных
		отраслях промышленности и сельского
		хозяйства.
		Преобразователи частоты с непосредственной
		преобразователи частоты с непосредственной связью
		Статический преобразователь частоты с

		промежуточным звеном постоянного тока
		Преобразователь частоты с инвертором,
		работающим по принципу широтно-
		импульсной модуляции (ШИМ)
		Недостатки электромашинных
		преобразователей и развитие электронной базы
		привели к созданию статических
		преобразователей на основе использования
		тиристоров или транзисторов.
15	Энергосбережение в АЭП	Общие вопросы энергосбережения
		Способы повышения КПД и коэффициента
		мощности АЭП
		Снижение потерь энергии в переходных
		режимах
		Энергосбережение — это комплекс правовых,
		технических и экономических мер,
		направленных на эффективное использование
		энергетических ресурсов. В соответствии с
		Федеральным законом РФ «Об
		энергосбережении» на промышленном
		предприятии должны быть разработаны
		мероприятия по экономии электроэнергии
		применительно к каждой электроустановке. В
		первую очередь это относится к устройствам с
		электрическим приводом, основной элемент
		которого электродвигатель. Известно, что
		более половины всей производимой в мире
		электроэнергии потребляется
		электродвигателями в электроприводах
		рабочих машин, механизмов, транспортных
		средств. Поэтому меры по экономии
		электроэнергии в электроприводах наиболее
		актуальны.
16	Итоги курса дисциплины	Приведенные примеры производственных
	АЭПТПМиТК	механизмов и технологических процессов, а
		число их можно увеличить, подтверждают, что
		использование для них частотно-регулируемых
		асинхронных электроприводов с системой
		технологической автоматики позволяет
		повысить качество управляемых процессов в
		переходных и установившихся режимах и
		обеспечить существенные ресурсо- и
		энергосбережения.
		опері осоережения.

5.3. Лабораторный практикум ОФО 7-8 семестр, ЗФО 8-9 семестр

Разд	Наименование раздела дисциплины	Наименование лабораторных работ	
ел			
1	Введение курса Автоматизированный	Введение в лабораторный практикум.	
	электропривод типовых	Правила техники безопасности при работе	
	производственных механизмов и	студентов в лабораториях кафедры	
	технологических комплексов	«Электротехника и электропривод» ИЭ	

	(АЭПТПМиТК)	ГГНТУ. Методические указания по		
		выполнению лабораторных работ		
		Рекомендации к домашней подготовке		
		Отчет по лабораторной работе		
		Содержание отчета и требования к его		
		оформлению		
2	Классификация, структура	Сборка электрической цепи и определение		
	АЭПТПМиТК	Показаний приборов		
3	Регулирование координат	Контрольно-измерительные средства		
	АЭПТПМиТК	Типовые режимы управления механизмами		
4	Пускозащитная аппаратура управления	Исследование законов электрической цепи		
	разомкнутых электроприводов	_		
5	Средства управления разомкнутых	Нерегулируемые и регулируемые		
	электроприводов	электроприводы		
		Программируемые контроллеры и		
		промышленные компьютеры		
6	Аварийные режимы и средства защиты	Исследование разветвленной цепи постоянного		
	в АЭП	тока с одним источником энергии		
		Коммутационная и защитная аппаратура		
7	Специальные виды защит	Исследование линии электропередачи		
	АЭПТПМиТК	Постоянного тока		
8	Типовые узлы и схемы управления ЭП	Типовые схемы управления электроприводами		
	с двигателями ПТ	с двигателями постоянного тока		
		Отчет по лабораторным работам		
9	Типовые узлы и схемы управления ЭП	Исследование неразветвленной цепи		
	с асинхронными двигателям	Переменного тока		
10	Автоматизированный ЭП с	Настройка и диагностирование параметров		
	синхронными электродвигателями	АЭПТПМиТК		
11	Технические средства замкнутых схем	Настройка и диагностирование параметров		
	управления АЭПТПМиТК	АЭПТПМиТК		
12	Замкнутые схемы управления	Настройка и диагностирование параметров		
	АЭПТПМиТК с ДПТ	АЭПТПМиТК		
13	Замкнутые схемы управления	Исследование электропривода переменного		
	электроприводов с двигателями	тока		
	переменного тока			
14	Электромашинные и статические	Исследование электропривода постоянного		
	преобразователи частоты	тока		
15	Энергосбережение в АЭП	Энергосберегающие режимы в АЭПТПМиТК		
16	Итоги лабораторного практикума	Итоги лабораторного практикума дисциплины		
	дисциплины АЭПТПМиТК	АЭПТПМиТК		

5.4. Практические занятия (семинары) – не предусмотрены

6. Самостоятельная работа студентов (СРС) по дисциплине 6.1. Подготовка к лабораторным работам

ОФО 6 семестр, ЗФО 7 семестр

№	Наименование раздела	Наименование лабораторных работ
п/п	дисциплины	панменование лаобраторных работ

1	Энергетическая система и ее структура	Моделирование параметровустановившегося режимаучастка электрической сети	
2	Режимы нейтралейЭЭС. ЭЭС напряжением до 1000В	Исследование режимов работы электрической сети в зависимости от ее нейтралей	
3	Моделирование протяженных Анализ эксплуатационных режимов разомкнутой электрической сети		
4	Годовые графики нагрузок и их характеристики	Расчет показателей графиков электрических нагрузок	
5	Общая характеристика задачи расчета и анализа установившихся режимов ЭЭС	Исследование симметричного установившегося режима работы замкнутой сети с двумя источниками питания	
6	Способы уменьшения потерь эл энергии в линиях	Исследование потерь электроэнергии в электрических сетях системы электроснабжения	
7	Выбор конфигурации и номинального напряжения ЭЭС	Составление вариантов схемы электрической сети и выбор наиболее рациональных решений.	
8	Основы технико-экономических расчётов электрических систем и сетей	Выбор рациональных средств повышения экономичности режимов работы ЭЭС и обеспечение качества электроэнергии	

6.3. Темы для самостоятельного изучения (доклад+презентация)

1.	Нерегулируемые и регулируемые электроприводы
2.	Программируемые контроллеры и промышленные компьютеры
3.	Контрольно-измерительные средства
4.	Типовые режимы управления механизмами
5.	Типовая структура автоматизированных технологических комплексов
6.	Коммутационная и защитная аппаратура
7.	Технические средства комплексов
8.	Электроприводы переменного тока
9.	Потери электроэнергии
10.	Компенсация реактивной мощности
11.	Качество электроэнергии
12.	Структура фактических (отчетных) потерь электроэнергии в электрических сетях
	энергоснабжающих организаций
13.	Методы расчета потерь в сетях и присоединенном оборудовании
14.	Электроприводы постоянного тока
15.	Средства управления и программирования
	электроприводов
16.	Настройка и диагностирование параметров автоматизированных
17.	Технологические комплексы полиграфического
	производства
18.	Система автоматизации картоноделательной машины
19.	Система автоматизации насосной станции

Учебно-методическое обеспечение самостоятельной работы студентов

- 1. Никитенко, Г. В. Электропривод производственных механизмов : учебное пособие / Г. В. Никитенко. Ставрополь : Ставропольский государственный аграрный университет, АГРУС, 2012. 240 с. ISBN 978-5-9596-0778-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/47399.html
- 2. Иванов, Г. В. Проектирование системы электропривода производственного механизма : учебно-методическое пособие / Г. В. Иванов, А. В. Мезенцева. Нижневартовск : Нижневартовский государственный университет, 2019. 64 с. ISBN 978-5-00047-518-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/92809.html
- 3. Конструирование и оснащение технологических комплексов / А. М. Русецкий, П. А. Витязь, М. Л. Хейфец [и др.]; под редакцией А. М. Русецкий. Минск: Белорусская наука, 2014. 317 с. ISBN 978-985-08-1656-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/29463.html
- 4. Путинцев, Н. Н. Автоматизированный электропривод : учебно-методическое пособие / Н. Н. Путинцев, А. М. Бородин, В. Т. Сысенко. Новосибирск : Новосибирский государственный технический университет, 2014. 80 с. ISBN 978-5-7782-2442-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45355.html
- 5. Сысенко, В. Т. Автоматизированный электропривод : учебно-методическое пособие / В. Т. Сысенко. Новосибирск : Новосибирский государственный технический университет, 2019. 52 с. ISBN 978-5-7782-3963-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/98689.html
- 6. Герасимов, А. В. Проектирование автоматизированных систем управления технологическими процессами : учебное пособие / А. В. Герасимов. Казань : Казанский национальный исследовательский технологический университет, 2016. 123 с. ISBN 978-5-7882-1987-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/80244.html

(Образец задания к самостоятельной работе)

Назначение самостоятельной работы по дисциплине состоитв том, чтобы ознакомиться с методами проектирования, научиться применять приобретенные знания к решению конкретных инженерных задач и приобрести навыки самостоятельной роботы, умение презентовать свои доклады.

При работе над заданием необходимо использовать широкий круг материалов: книги и статьи, справочники, ГОСТы, каталоги, интернет и т.д.

Общие требования к оформлению докладов.

Текст документа выполняют с использованием компьютера на одной стороне листа белой бумаги формата A4 (210×297) мм шрифтом TimesNewRoman размером 14. Межстрочный интервал принимают одинарным либо полуторным. Абзацный отступ — 1,25 см.

В текстовом документе допускается отдельные слова, формулы, условные знаки, иллюстрации выполнять от руки, используя чертежный шрифт (черной пастой или тушью).

В тексте документа не допускается применять сокращения слов, кроме установленных правилами русской орфографии.

Формулы и уравнения

Формулы выделяют из текста в отдельную строку. Если формула не умещается в одну строку, то ее переносят на следующую строку на знаках выполняемых операций, причем знак в начале следующей строки повторяют.

Формулы нумеруют по порядку арабскими цифрами в пределах документа. Номер указывают в круглых скобках с правой стороны листа на уровне формулы.

Формулы, помещаемые в таблицах, не нумеруют.

Пояснения символов и числовых коэффициентов, входящих в формулу, приводят непосредственно под ней.

Пояснения каждого символа приводят с новой строки. Первую строку пояснения начинают со слова «где», без абзацного отступа.

Пример – Активная мощность определяется по формуле

 $P = U \cdot I \cdot \cos \varphi \tag{1}$

где U - напряжение;

I - ток;

cos φ - коэффициент мощности.

Расчеты необходимо сопровождать кратким пояснениями в отношении целесообразности выбора материалов, электрических нагрузок, их отношений, и пр.

Изложение материала должно быть технически грамотным и сжатым. Не разрешается написание фраз сокращенными словами, за исключением общепринятых обозначений.

Схемы, рисунки и эскизы, помещаемые в тексте, нумеруются. Если вопросы отражаются в графической части проекта, то в пояснительной записке доклада необходимо делать ссылки на чертеж.

Однотипные расчеты сводятся в таблицы. В конце пояснительной записки необходимо дать оценку полученным результатам расчетов, исходя из сопоставления рассчитанной машины с аналогичной машиной, выпускаемой злектромашиностроительным заводом.

Объем графической части проекта составляет 1 лист формата А-1 (841 x 594).. Выполняется чертеж общего вида машины с соответствующими разрезами. При выполнении чертежа рекомендуется взять чертеж аналогичной машины из каталога или учебника.

Чёртеж должен быть снабжен спецификацией. Основное назначение спецификации заключается в том, чтобы показать материалы, из которых выполнены детали. Поэтому в неё надо помещать основные детали электрической машины или трансформатора. Надписи на чертеже, штампе и в спецификации должны приводиться стандартным чертежным шрифтом. Спецификация выполняется на отдельном листе, прилагаемом в конце пояснительной записки.

7. Оценочные средства.

Вопросы к зачёту и экзамену ОФО 7-8 семестр, ЗФО 8-9 семестр

- 1. Энергосбережение это комплекс правовых...?
- 2. Известно, что более половины всей производимой в мире электроэнергии потребляется...?
- 3. Основные положения энергосбережения регламентированы государственными стандартами РФ: ...?
- 4. Показатели регулирования скорости ЭП
- 5. Пример необходимости регулирования координат АЭПТПМиТК
- 6. Процесс регулирования координат
- 7. Стабильность скорости, характеризуемая изменением...
- 8. Плавность регулирования скорости...?
- 9. Направление регулирования скорости?
- 10. Допустимая нагрузка двигателя. Общие сведения
- 11. Экономичность регулирования скорости. Общие сведения
- 12. Регулирование момента, тока, положения ЭП
- 13. Способы регулирования частоты вращения ДПТ
- 14. Способы регулирования частоты вращения АД
- 15. Наиболее распространенные способы регулирования...?
- 16. Частота питающего тока
- 17. Сопротивление в роторных, статорных цепях.
- 18. Пускозащитная аппаратура управления разомкнутых электроприводов
- 19. Электрические аппараты ручного управления
- 20. Электрические аппараты дистанционного управления
- 21. Кнопки управления предназначены...?
- 22. Ключи управления (универсальные переключатели)....
- 23. Командоконтролллеры (командоаппараты) служат...?
- 24. Пакетные выключатели это...?
- 25. Контроллеры это....
- 26. Автоматические выключатели (автоматы) предназначены...?
- 27. Магнитный пускатель представляет собой...?
- 28. Электромагнитное реле ...?
- 29. Герконовые электромагнитные реле ...?
- 30. Бесконтактные логические элементы?
- 31. Датчики времени.
- 32. Электромеханическое реле контроля скорости (РКС) работает по принципу?
- 33. Тахогенератор (ТГ) как датчик скорости....
- 34. Латчики тока?
- 35. Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП...?
- 36. Аварийные режимы и средства защиты в ЭП
- 37. Условия работы электроприводов в сельском хозяйстве
- 38. Основные аварийные режимы и их функциональные связи
- 39. Виды и аппараты защит электродвигателей в с.х.
- 40. Специальные виды защит
- 41. Специальные виды защит
- 42. Блокировки и сигнализация в ЭП
- 43. Минимальная токовая защита применяется....
- 44. Защита от перенапряжения на обмотке возбуждения ДПТ требуется...?
- 45. Защита от повышения напряжения применяется главным образом в системе...?
- 46. Защита от превышения скорости применяется в ЭП рабочих машин, для которых Защита от затянувшегося пуска СД обеспечивает ...?
- 47. Путевая защита обеспечивает отключение ЭП при достижении ...?
- 48. Защита от выпадения СД из синхронизма применяется для ЭП ...?

- 49. Фазочувствительные устройства защиты электродвигателей.
- 50. Автоматизированный ЭП с синхронными электродвигателями
- 51. Общие сведения по АЭП с синхронными двигателями (СД)?
- 52. Схема включения, режимы работы?
- 53. Типовые схемы управления ЭП с СД?
- 54. Угловая характеристика СД?
- 55. Технические средства замкнутых схем управления АЭП?
- 56. Аналоговые элементы и устройства управления ЭП?
- 57. Дискретные элементы и устройства управления ЭП?
- 58. Датчики скорости и положения в замкнутых ЭП?
- 59. Аналоговые элементы и устройства управления АЭП с унифицированной блочной системы регулирования (УБСР). Блоки УБСР-АИ размещаются на сменных ячейках со штепсельными разъемами и имеют печатный монтаж (аннотация)?
- 60. Функциональные преобразователи?
- 61. Датчики координат электрических приводов?
- 62. Замкнутые схемы управления АЭП с ДПТ?
- 63. Замкнутые схемы управления электроприводов с двигателями постоянного тока по скорости?
- 64. Регулирование (ограничение) тока и момента двигателя постоянного тока с помощью нелинейной отрицательной обратной связи по току
- 65. Замкнутая схема электрического привода с двигателями постоянного тока с обратными связями по скорости и току?
- 66. Замкнутые электропривода с подчиненным регулированием координат
- 67. Замкнутые схемы управления электроприводов с двигателями переменного тока?
- 68. Замкнутая схема управления асинхронного электропривода, выполненного по системе «тиристорный регулятор напряжения—асинхронный двигатель» (ТРН—АД)
- 69. Замкнутый электрический привод с частотным управлением асинхронного двигателя
- 70. Замкнутая схема импульсного регулирования скорости асинхронного двигателя с помощью резистора в цепи ротора
- 71. По исторически сложившейся тенденции регулируемый ЭП строился главным образом с использованием ДПТ. В последние годы в связи с появлением разнообразных средств управления регулируемый ЭП переменного тока начал быстро вытеснять АЭП с ДПТ...?
- 72. Электромашинные преобразователи частоты
- 73. Законы частотного регулирования
- 74. Электромашинные преобразователи частоты с использованием синхронного генератора
- 75. Электромашинный асинхронный преобразователь частоты
- 76. Вентильно-электромашинный преобразователь частоты
- 77. Статические преобразователи частоты
- 78. Преобразователи частоты с непосредственной связью Нарисовать функциональную схему выходного напряжения при чисто активной нагрузке?
- 79. Статический преобразователь частоты с промежуточным звеном постоянного тока
- 80. Преобразователь частоты с инвертором, работающим по принципу широтно-импульсной модуляции (ШИМ) Нарисовать функциональную схему выходного напряжения при чисто активной нагрузке?
- 81. Схема статического преобразователя частоты с промежуточным звеном постоянного тока.
- 82. Энергосбережение в АЭП?

- 83. Общие вопросы энергосбережения?
- 84. Способы повышения КПД и коэффициента мощности АЭП?
- 85. Снижение потерь энергии в переходных режимах?
- 86. Энергосбережение в регулируемом АЭП?
- 87. Общие вопросы энергосбережения?

8. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Новые технические решения в современных следящих электроприводах: учебное пособие по дисциплине «Системы управления электроприводов» / А. В. Стариков, С. Л. Лисин, В. А. Арефьев, Д. Н. Джабасов. Самара: Самарский государственный технический университет, ЭБС АСВ, 2018. 92 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/90652.html
- 2. Стариков, А. В. Цифровые модуляторы для систем управления электроприводов : учебное пособие по дисциплине «Системы управления электроприводов» / А. В. Стариков, С. Л. Лисин, Д. Ю. Рокало. Самара : Самарский государственный технический университет, ЭБС АСВ, 2018. 75 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/91148.html
- 3. Путинцев, Н. Н. Автоматизированный электропривод : учебно-методическое пособие / Н. Н. Путинцев, А. М. Бородин, В. Т. Сысенко. Новосибирск : Новосибирский государственный технический университет, 2014. 80 с. ISBN 978-5-7782-2442-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45355.html
- 4. Малахов, А. П. Элементы систем автоматики и автоматизированного электропривода : учебно-методическое пособие / А. П. Малахов, А. П. Усачёв. Новосибирск : Новосибирский государственный технический университет, 2011. 106 с. ISBN 978-5-7782-1770-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45460.html
- 5. Симаков, Г. М. Системы расчета автоматизированного электропривода : учебное пособие / Г. М. Симаков, Ю. В. Панкрац, Д. А. Котин. Новосибирск : Новосибирский государственный технический университет, 2019. 147 с. ISBN 978-5-7782-3866-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/99358.html

б) дополнительная:

- 1. Шидловский, С. В. Автоматизация технологических процессов и производств: учебное пособие / С. В. Шидловский; под редакцией Н. И. Шидловская. Томск: Томский государственный университет систем управления и радиоэлектроники, 2005. 100 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/13918.html
- 2. Юсупов, Р. Х. Основы автоматизированных систем управления технологическими процессами : учебное пособие / Р. Х. Юсупов. Москва : Инфра-Инженерия, 2018. 132 с. ISBN 978-5-9729-0229-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/78225.html
- 3. Никитенко, Г. В. Электропривод производственных механизмов : учебное пособие / Г. В. Никитенко. Ставрополь : Ставропольский государственный аграрный университет,

- АГРУС, 2012. 240 с. ISBN 978-5-9596-0778-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/47399.html
- 4. Даниленко, Ю. И. Типовые схемы автоматического управления электроприводами : методические указания к практическим занятиям по курсу «Электротехника и электроника» / Ю. И. Даниленко. Москва : Московский государственный технический университет имени Н.Э. Баумана, 2013. 20 с. ISBN 978-5-7038-3754-2. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/31650.html

9. Материально-техническое обеспечение дисциплины «Электрические сети и системы»

Технические средства обучения – сосредоточены в компьютерной лаборатории кафедры ЭЭП. Технические средства обучения используются при выполнении студентами практических работ.

Персональные компьютеры и компьютерные классы.

Использование ЭВМ предусматривается:

1. Для обучения и контроля занятий студентов по всем разделам курса.

При наличии обучающих и контролирующих программ ЭВМ может использоваться при самостоятельной проработке студентами различных разделов курса, при защите студентами лабораторных, и практических работ.

- 2. Для обработки и анализа опытных данных, полученных в процессе выполнения лабораторных работ.
 - 3. Для выполнения практических работ в имитационном исполнении.
 - 4. Для выполнения расчетов в процессе проведения практических занятий.
 - 5. Для выполнения расчетно-графических и курсовых работ
- В лаборатории содержатся электронные версии методических указаний к лабораторным работам, практическим занятиям, вопросы к экзамену

Составитель: Ст. преподаватель кафедры «Электротехника и электропривод»	 /Абдулхакимов У.И/
Согласовано:	
Зав. кафедрой «Электропривод»	 /Магомадов Р.А-М./
Директор ДУМР	 /Магомаева М.А./