Документ подписан простой электронной подписью

ИНФОРМАМИ В ИНФОРМАМИ В РОССИЙСКОЙ ФЕДЕРАЦИИ

ФИО: Минцаев Магомед Шавалович

Должност ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Дата подписания: 20.11.2023 18:59:12 имени академика М. Д. Миллионщикова

Уникальный программный ключ:

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

РАБОЧАЯ ПРОГРАММА

дисциплины

«Диагностика разрушений»

Направление подготовки

15.03.02 «Технологические машины и оборудование»

Профиль

«Оборудование нефтегазопереработки»

Квалификация выпускника

бакалавр

1. Целью изучения курса является:

Подготовка студентов к производственно-технической деятельности, связанной с диагностикой, ремонтом, монтажом, сервисным обслуживанием и рациональной эксплуатацией оборудования пищевых производств; обучение студентов использованию знаний, полученных в результате фундаментальной подготовки по общенаучным и общетехническим дисциплинам для решения инженерных задач, связанных, с технической диагностикой технологического оборудования, как этапа обеспечения его надежности, с ремонтом, наладкой и монтажом основного технологического и вспомогательного оборудования нефтеперабатывающей промышленности.

Задачи дисциплины:

- изучение основ технической диагностики и теории надежности;
- освоение математических методов распознавания дефектов и разработки оперативных решений в их устранении;
 - изучение методов и средств измерения диагностических параметров;
- рациональный выбор направлений повышения надежности технологического оборудования;
- изучение планирования, организации и проведения сервисного обслуживания и ремонта оборудования;
- изучение структуры межремонтного цикла, трудоемкости и периодичности ремонта технологического, энергетического и общезаводского оборудования;
- изучение подготовительных операций ремонта и особенностей ремонта оборудования, подведомственного органам Госгортехнадзора;
 - анализ причин изнашивания элементов и деталей;
- изучение планирования, организации и проведения монтажных и пуско-наладочных работ.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к вариативной части профессионального цикла. Для изучения данной дисциплины требуется знание: теоретической механики, технология машиностроения, коррозия металлов, сопромата, детали машин, технология конструкционных материалов, материаловедение.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

способностью к систематическому изучению научно-технической информации, отечественного и зарубежного опыта по соответствующему профилю подготовки (ПК-1);

умением применять методы контроля качества изделий и объектов в сфере профессиональной деятельности, проводить анализ причин нарушений технологических процессов разрабатывать мероприятия по их предупреждению (ПК-9);

умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования (ПК-13);

умением применять методы стандартных испытаний по определению физико-механических свойств и технологических показателей используемых материалов и готовых изделий (ПК-16)

В результате освоения дисциплины студент должен

Знать:

- применение методов контроля изделий и объектов в сфере профессиональной деятельности;
 - причины нарушения технологических процессов;
 - меры по предупреждению нарушений технологических;
- техническое обслуживание и метрологические испытания приборов контроля.

Уметь:

- применять методы контроля качества изделий и объектов в сфере профессиональной деятельности;
 - проводить анализы причин нарушений технологических процессов;
- разрабатывать мероприятия по предупреждению нарушений технологических процессов.

Владеть:

знаниями методов стандартных испытаний по определению физикомеханических свойств и технологических показателей используемых материалов и готовых изделий.

4.Объем дисциплины и виды учебной работы

Таблица 1

Вид учебной работы		Всего часов		Семестры	
				4	9
		ОФО	3ФО	ОФО	3ФО
Контактная работа(всего)		48	12	51	12
В том числе:					
Лекции		32	8	32	8
Практические занятия		16	4	16	4
Семинары					
Лабораторные работы					
Самостоятельная работа (всего)		60	96	60	96
В том числе:					
Реферат		36		36	
И (или) другие виды самостоятельной работы:					
Подготовка к лабораторным работам					
Подготовка к практическим занятиям		12	36		
Подготовка к зачету (экзамену)		12	60		
Вид отчетности		Зачет	Зачет		
Общая трудоемкость	ВСЕГО в часах	108	108		
дисциплины	ВСЕГО в зач. ед.	3	3		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 2

№ п/п	Наименование раздела дисциплины	Лекц. часы	Практ зан. часы	Лаб.зан. часы	Семинар ы часы
1.	Эксплуатационная надёжность оборудования. Повреждаемость при эксплуатации	2			
2.	Диагностика оборудования и анализ отказов	4	2		
3.	Классификация контролируемых параметров и дефектов	2			
4.	Методы обнаружения трещин	4	2		
5.	Виды неразрушающего контроля	2			

6.	Оценка выявляем ости дефектов различными видами НК	4	2	
7.	Диагностика разрушений методами ультразвуковой дефектоскопии и акустической эмиссии.	4		
8.	Повреждаемость конструкционных материалов	2		
9.	Повреждаемость сталей при циклическом деформировании и методы испытания на малоцикловую усталость	4		
10.	Распределение дефектов в конструкции в зависимости от геометрической и физической неоднородности аппарата	2	2	
11.	Проверка работоспособности бурильной установки.	2	2	
12.	Диагностирование конструкции с целью преодоления меры поврежденности	4	2	
	Всего часов	36	12	

5.2. Лекционные занятия

Таблица 3

Раз-	Наименование раздела дисциплины	Содержание раздела
1.	Эксплуатационная надёжность оборудования. Повреждаемость при эксплуатации.	Особенности эксплуатации крупногабаритных конструкций и факторы, влияющие на механические характеристики материала Факторы влияющие на образование повреждений и оценка повреждённости
2.	Диагностика оборудования и анализ отказов	Влияние сварочных работ на образование трещин и других дефектов. Диагностика трещин в крупногабаритных конструкциях и факторы, влияющие на поврежденность конструкций.
3.	Классификация контролируемых параметров и дефектов	Классификация контролируемых параметров и дефектов Классификация диагнозов с учётом априорной информации Моделирование технологической наследственности средствами темпоральной логики
4.	Методы обнаружения трещин.	Виды неразрушающего контроля (НК)- ультразвуковой, вихретоковый, рентгеновский, метод акустической эммисия, контроль проникающими веществами.
5.	Виды неразрушающего контроля	Виды неразрушающего контроля при диагностировании крупногабаритных конструкций. Определение характера распределения дефектов в конструкции по результатам анализа технологических карт контроля аппаратов.
6.	Оценка выявляем ости дефектов различными видами НК.	Диагностика разрушения плоских образцов при предварительном пластическом деформировании образцов на универсальной механической машине УММ-50. Оценка локальной и общей поврежденности конструкций на основе экспериментальных исследований.
7.	Диагностика разрушений	Диагностика разрушения плоских образцов при предварительном пластическом деформировании

	методами ультразвуковой дефектоскопии и акустической эмиссии.	образцов на универсальной механической машине УММ-50. Определение относительного обобщенного параметра при упруго-пластичном деформировании на УММ-50. Оценка локальной и общей поврежденности конструкций на основе экспериментальных исследований в предыдущих лабораторных работах
8.	Повреждаемость конструкционных материалов	Повреждаем ость конструкционных материалов при деформационном упрочении и оценка прочностных свойств вихретоковым методом.
9.	Повреждаемость сталей при циклическом деформировании и методы испытания на мало-цикловую усталость	Диагностика повреждаемости сталей при циклическом деформировании. Определение обобщенного параметра β, используемого для регистрации поврежденности сталей Построение зависимости относительного обобщенного параметра βотн. от числа циклов погружения N.
10.	Распределение дефектов в конструкции в зависимости от геометрической и физической неоднородности аппарата	Оценка поврежденности колонного аппарата при двумерном распределении диагностических параметров. Классификация диагнозов с учётом априорной информации. Моделирование технологической наследственности средствами темпоральной логики. Расчёт напряженно — деформированного состояния колонны
11.	Проверка работоспособност и бурильной установки.	Проверка работоспособности бурильной установки прослушиванием работы узлов и механизмов на наличие посторонних шумов и стуков, указывающих наличие неисправностей в оборудовании
12.	Диагностирование конструкции	Диагностирование конструкции с целью определения меры поврежденности, используя снижение запаса пластичности материала по сравнению с исходным запасом пластичности

6. Самостоятельная работа студентов по дисциплине

Темы для реферата Повреждаем ость конструкционных материалов при деформационном упрочении и оценка прочностных свойств вихретоковым методом. Определение обобщенного параметра β, используемого для регистрации поврежденности сталей. Построение зависимости относительного обобщенного параметра β_{отн.} от числа циклов погружения N. Проверка работоспособности бурильной установки прослушиванием работы узлов и механизмов на наличие посторонних шумов и стуков, указывающих наличие неисправностей в оборудовании. Диагностирование конструкции с целью определения меры поврежденности. Диагностирование конструкции с целью определения меры поврежденности, используя снижение запаса пластичности материала по сравнению с исходным запасом пластичности.

Учебно-методическое обеспечение для самостоятельной работы студентов:

- 1. Агиней Р.В. Алгоритм определения механических напряжений в металле трубопроводов по коэрцитивной силе металла / Агиней Р.В., Кузьбожев А.С., Андронов И.Н. // Нефтегазовое дело. 2007. Том 5. №1. С. 235-240.
 - 2. Клюев В.В. Неразрушающий контроль и диагностика. Справочник 2-е изд., перераб. и доп. Москва: Машиностроение, 2003. 656 с.
- 3. Кузеев И.Р., Баширов М.Г. «Электромагнитная диагностика оборудования нефтемеханических и нефтеперерабатывающих

производств», Уфа,2001г., 294 стр.

7. Оценочные средства 7.1 Образец текущего контроля

- 1. Повреждаемость конструкционных материалов при деформационном упрочении.
 - 2. Диагностика повреждаемости сталей при циклическом деформировании.
- 3. Оценка поврежденности колонного аппарата при двумерном распределении диагностических параметров.
- 4. Диагностирование конструкции с целью определения меры поврежденности, используя снижение запаса пластичности материала по сравнению с исходным запасом пластичности

7.2 Вопросы к 1-ой рубежной аттестации

- 1. Особенности эксплуатации крупногабаритных конструкций
- 2. Факторы, влияющие на механические характеристики материала.
- 3. Факторы, влияющие на образование повреждений
- 4. Методы оценки повреждённости
- 5. Влияние сварочных работ на образование трещин и других дефектов.
- 6. Диагностика трещин в крупногабаритных конструкциях
- 7. Факторы, влияющие на поврежденность крупногабаритных конструкций.
 - 8. Классификация контролируемых параметров и дефектов
 - 9. Классификация диагнозов с учётом априорной информации
- 10. Моделирование технологической наследственности средствами темпоральной логики
- 11. Виды неразрушающего контроля (НК)-ультразвуковой, вихретоковый, рентгеновский.
- 12. Виды неразрушающего контроля (НК)-метод акустической эммиссии, контроль проникающими веществами
- 13. Виды неразрушающего контроля при диагностировании крупногабаритных конструкций.
- 14. Определение характера распределения дефектов в конструкции по результатам анализа технологических карт контроля аппаратов.
- 15. Диагностика разрушения плоских образцов при предварительном пластическом деформировании образцов на универсальной механической машине УММ-50.
- 16. Оценка локальной и общей поврежденности конструкций на основе экспериментальных исследований.

Образец билета к 1-ой рубежной аттестации

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. акад. М.Д. Миллионщикова

Дисциплина: «<u>Диагностика разрушения</u>»

Билет № 1

- 1. Назначение подъёмно-транспортных машин
- 2. Устройства безопасной работы на элеваторе

Ст. преподаватель Зав. кафедрой ТМО

7.3 Вопросы к 2-ой рубежной аттестации.

- 1. Диагностика разрушения плоских образцов при предварительном пластическом деформировании образцов на универсальной механической машине УММ-50 (4 часа).
- 2. Определение относительного обобщенного параметра при упругопластичном деформировании на УММ-50 (4 часа).
- 3.Оценка локальной поврежденности конструкций на основе экспериментальных исследований.
- 4. Оценка общей поврежденности конструкций на основе экспериментальных исследований
- 5. Повреждаемость конструкционных материалов при деформационном упрочении.
 - 6. Оценка прочностных свойств вихретоковым методом.
 - 7. Диагностика повреждаемости сталей при циклическом деформировании.
- 8.Определение обобщенного параметра, используемого для регистрации поврежденности сталей
- 9.Построение зависимости относительного обобщенного параметра относительтно от числа циклов нагружения N.
- 10.Оценка поврежденности колонного аппарата при двумерном распределении диагностических параметров.
 - 11. Классификация диагнозов с учётом априорной информации.
- 12. Моделирование технологической наследственности средствами темпоральнойлогики.
 - 13. Расчёт напряженно деформированного состояния колонны.
- 14. Проверка работоспособности бурильной установки прослушиванием работы узлов и механизмов на наличие посторонних шумов и стуков, указывающих наличие неисправностей в оборудовании.
- 15. Диагностирование конструкции с целью определения меры поврежденности, используя снижение запаса пластичности материала по сравнению с исходным запасом пластичности.

Образец билета к 2-ой рубежной аттестации

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. акад. М.Д. Миллионщикова

Дисциплина: «Диагностика разрушения»

Билет № 1

- 1. Оценка прочностных свойств вихретоковым методом
- 2. Проверка работоспособности бурильной установки прослушиванием работы узлов и механизмов на наличие посторонних шумов и стуков, указывающих наличие неисправностей в оборудовании

Ст. преподаватель Зав. кафедрой ТМО

А.А. Эльмурзаев

7.4 Вопросы по зачету

- 1.Особенности эксплуатации крупногабаритных конструкций.
- 2. Факторы, влияющие на механические характеристики материала..
- 3. Факторы, влияющие на образование повреждений.
- 4. Методы оценки повреждённости.
- 5. Влияние сварочных работ на образование трещин и других дефектов.
- 6. Диагностика трещин в крупногабаритных конструкциях.
- 7. Факторы, влияющие на поврежденность крупногабаритных конструкций.
- 8. Классификация контролируемых параметров и дефектов
- 9. Классификация диагнозов с учётом априорной информации
- 10. Моделирование технологической наследственности средствами темпоральной логики
- 11.Виды неразрушающего контроля (НК)-ультразвуковой, вихретоковый, рентгеновский.
- 12.Виды неразрушающего контроля (НК)-метод акустической эммиссии, контроль проникающими веществами
- 13. Виды неразрушающего контроля при диагностировании крупногабаритных конструкций.
- 14.Определение характера распределения дефектов в конструкции по результатам анализа технологических карт контроля аппаратов.
- 15. Диагностика разрушения плоских образцов при предварительном пластическом деформировании образцов на универсальной механической машине УММ-50.
- 16 Оценка локальной и общей поврежденности конструкций на основе экспериментальных исследований.

- 17. Диагностика разрушения плоских образцов при предварительном пластическом деформировании образцов на универсальной механической машине УММ-50.
- 18. Определение относительного обобщенного параметра при упругопластичном деформировании на УММ-50.
- 19. Оценка локальной поврежденности конструкций на основе экспериментальных исследований.
- 20.Оценка общей поврежденности конструкций на основе экспериментальных исследований
- 21.Повреждаемость конструкционных материалов при деформационном упрочении.
 - 22. Оценка прочностных свойств вихретоковым методом.
- 23. Диагностика повреждаемости сталей при циклическом деформировании.
- 24.Определение обобщенного параметра используемого для регистрации поврежденности сталей
- 26.Оценка поврежденности колонного аппарата при двумерном распределении диагностических параметров.
 - 27. Классификация диагнозов с учётом априорной информации.
- 28. Моделирование технологической наследственности средствами темпоральной логики.

Образец билета к зачету

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. акад. М.Д. Миллионщикова

Дисциплина: «Диагностика разрушения»

Билет № 1

- 1. Особенности эксплуатации крупногабаритных конструкций
- 2. Моделирование технологической наследственности средствами темпоральнойлогики

Ст. преподаватель Зав. кафедрой ТМО

А.А. Эльмурзаев \

8. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- **1.** Агиней Р.В. Алгоритм определения механических напряжений в металле трубопроводов по коэрцитивной силе металла / Агиней Р.В., Кузьбожев А.С., Андронов И.Н. // Нефтегазовое дело. 2007.
- **2.** Клюев В.В. Неразрушающий контроль и диагностика. Справочник 2-е изд., перераб. и доп. Москва: Машиностроение, 2003. 656 с.
- **3.** Кузеев И.Р., Баширов М.Г. «Электромагнитная диагностика оборудования нефтемеханических и нефтеперерабатывающих производств», Уфа,2001г., 294 стр.

Дополнительная литература

- **1.** Махутов Н.А.,Пермяков В.Н. Ресурс безопасной эксплуатации сосудов и трубопроводов /,Новосибирск: Наука, 2005. 516 с.
- 2. Самигуллин Г.Х. Алгоритм диагностирования зданий и сооружений нефтегазовых предприятий. Остаточный ресурс нефтегазового оборудования: Сб. науч. трудов. Уфа: Изд-во УГНТУ, 2007. 2007. №2.

Интернет ресурсы:

- 1. www.twirpx.com
- 2. www.allboors.ru

9. Материально-техническое обеспечение дисциплины

При чтении лекций для проведения качественного обучения студентов используется экран и монитор для демонстрации учебных фильмов.

Технические средства обучения – сосредоточены лаборатории кафедры TMO.

В лаборатории имеются наглядные пособия, лабораторные установки, детали и узлы нефтеперерабатывающего оборудования

Составитель:

Доцент кафедры «ТМО»

/<u>3.С. Иераилова</u>/

СОГЛАСОВАНО:

Зав. кафедрой «ТМО»

/<u>Л.Д. Эльмурзаев</u>/

Директор ДУМР