Документ подписан простой электронной подписью

Информац**МИНИСТЕР**СТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФИО: МИНЦ**ТЕРГОЗИТЕЙСТИЙ** ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Должность: Ректор имени академика М.Д. Миллионщикова

Дата подписания: 23.11.2023 00:09:00

Уникальный программный ключ:

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5825f9fa4304cc

«УТВЕРЖДАЮ»
Первый проректор
И.Г. Гайрабеков
«02» сентября 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«ФИЗИКА»

Направления подготовки

Направление подготовки

15.03.04 Автоматизация технологических процессов и производств

Направление (профиль)

«Автоматизация технологических процессов и производств»

Квалификация

Бакалавр

Год начала подготовки

2021

1. Цели и задачи дисциплины

Изучение основных физических явлений.

Овладение фундаментальными понятиями, законами и теориями классической и современной физики.

Формирования научного мировоззрения и современного физического мышления.

Ознакомление с современной научной аппаратурой, формирование навыков проведения физического эксперимента, научиться оценивать численные порядки величин, характерных для различных разделов естествознания.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Физика» входит в базовую часть математического и естественно-научного цикла и является обязательной для изучения.

«Физика» является предшествующей для дисциплин: «Экологи», «Безопасность жизнедеятельности», «Вычислительные машины, сети и телекоммуникации», «Электротехника и электроника» и др.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- владением широкой общей подготовкой (базовыми знаниями) для решения практических задач в области информационных систем и технологий (ОПК-1);
- способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОПК-2).

4. Требования к результатам освоения дисциплины

• Основные физические явления, фундаментальные понятия и законы классической и современной физики;

Уметь:

• применять полученные знаки по физике при изучении других дисциплин, выделять конкретное физическое содержание в прикладных задачах профессиональной деятельности;

владеть:

• современным физико-математическим аппаратом в решении естественных-научных проблемах по специальности.

Таблица 1

David various in national	Всего	Всего	ОФО			3ФО		
Вид учебной работы	ОФО	3ФО	2	3	4	2	3	4
Контактная работа (всего)	233/6,5	60	85	80	68	22	22	16
В том числе:								
Лекции	100/2,7	26	34	32	34	10	8	8
Практические занятия	33/0,92	12	17	16	0	6	6	0
Лабораторные работы	100/2,7	24	34	32	34	6	6	8
Самостоятельная работа (всего)	235/6,5	408	70	84	81	136	136	136
В том числе:								
Презентации	105	195	30	34	41	65	65	65
Подготовка к лабораторным работам	60	118	15	20	15	20	20	20
Подготовка к практическим занятиям	20	50	15	10	15	20	20	20
Подготовка к зачету	25	20	5	10	5	15	15	15
Подготовка к экзамену	25	25	5	10	5	16	16	16
	Зачет	Зачет		за- чет	Экз.	3a-	3a-	
Вид отчетности	Зачет	Зачет	зачет			за- чет	чет	Экз.
	Экз.	Экз.		-101		-101	-101	

Общая трудоемкость дисци-	всего часах	В	468	468	155	164	149	158	158	152
плины	всего зач. ед	В.	13	13	4,3	4,6	4,1	4,4	4,4	4,2

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 2

№ п/п	Наименование раздела дисциплины по семестрам	лекции	практ. занятия	лаб. занятия	всего
1	2 семестр Физические основы механики	14	10	14	38
2	Молекулярная физика и термодинамика. Электростатика. Постоянный ток.	20	7	20	47
3	3 семестр Электричество и магнетизм. Геометрическая оптика.	20	12	20	52
4	Колебания и волны.	12	4	4	28
5	4 семестр Волновая оптика. Элементы ФТТ.	34	2	34	68
	трудоемкость дисциплины ая единица	100 2,8	33 0,91	100 2,8	233 6,47

5.2. Лекционные занятия.

Таблица 3

№ п/п	Наименование раз- дела дисциплины	Содержание раздела
1	Физические основы механики	2 семестр Механика. Физические модели. Динамика тел (частиц). Уравнения движения. Законы сохранения. Элементы релятивистской механики. Кинематика и динамика твердого тела. Динамика абсолютно
2	Основы молеку- лярной физики и термодинамики.	твердого тела. Энергия. Введение в молекулярную физику й термодинамику. Идеальный газ. Кинетические явления. Конденсированное состояние. Три начала термодинамики. Теплоемкость. Круговой процесс. Классическая статистика.
3	Электростатика. Постоянный ток. Электричество и магнетизм. Постоянный ток.	З семестр Электростатика. Постоянный ток. Законы постоянного тока. Сопротивление. Напряжение. Электрический ток в различных средах. Контактные явления. Магнитное поле. Сила Лоренца. Сила Ампера. Магнитное поле в вакууме и в веществе.
4	Колебания и волны. Постоянный ток.	Механические и электромагнитные волны. Гармонические, затухающие и вынужденные колебания. Электромагнитные колебания. Колебательный контур. Уравнение бегущей волны. Звук. Интерференция и дифракция волн. Дисперсия волн. Когерентность волн. Шкала электромагнитных волн. 4 семестр

		Опто-волоконная связь. Элементы геометрической оптики. Линза.
		Построение в линзе. Электронные и магнитные линзы.
	Оптика.	
	Квантовая физика.	Геометрическая оптика. Волновая оптика. Интерференция света.
	Атомная и ядер-	Дифракция света. Поляризация света. Дисперсия света. Принцип
5	ная физика. Фи-	голографии. Квантовая оптика. Принцип неопределенности. Стро-
	зика микрочастиц.	ение атома. Оптические спектры. Электроны в кристаллах. Атом-
	_	ное ядро. Ядерные превращения. Радиоактивность. Элементарные
		частицы.

5.3. Лабораторные занятия.

Таблица 4.

№ п/п	раздела дисциплины	Содержание раздела					
1.	1.	ІІ семестр					
		Обработка результатов физического эксперимента.					
		Определение ускорения свободного падения (q) с помощью математического матника					
		Определение коэффициента трения качения					
		Определение момента инерции с помощью маятника Максвелла ФПМ-3					
		Определение скорости звука методом резонанса звуковых волн					
2.	2.	Определение коэффициента вязкости воздуха капиллярным методом					
		Определение коэффициента внутреннего трения жидкости по методу Стокса					
		Определение отношения теплоемкостей воздуха при постоянном давлении и объеме					
		Определение молярной массы воздуха					
3.	3.	III семестр					
		Изучение электроизмерительных приборов					
		Изучение работы электронного осциллографа					
		Определение работы выхода электронов из металла					
		Изучение электрических свойств сегнетоэлетриков					
		Определение отношения заряда электрона к его массе методом магнетрона.					
		Определение периода колебаний струны.					
4	4	IV семестр					
		Линзы и их погрешности					
		Определение расстояния между щелями в опыте Юнга					
		Исследование закона Малюса и прохождения поляризованного света через фазовую пластинку					

Определение фокусных расстояний положительной и отрицательной линз методом Бесселя
Bcero 52/1,44

5.4. Практические занятия.

Таблица 5

		1
№ π/π	Раздел дисци- плины	Содержание раздела
		2 семестр
1	1	Уравнение движения
	2	Законы сохранения
	3	Динамика абсолютно твердого тела
2	4	Термодинамика
	5	Конденсированное состояние
	6	Кинетические явления
		3 семестр
3	7	Напряженность электрического поля
	8	Потенциал электрического поля
	9	Энергия магнитного поля
4	10	Идеальный гармонический осциллятор
	11	Электромагнитные волны в вакууме
	12	Поглощение и дисперсия волн
	13	Геометрическая оптика
		4 семестр
5	14	Фотоэффект
	15	Тепловое излучение
	16	Элементы квантовой механики
	17	Зонная теория твердого тела
	18	Теплоемкость твердого тела
	19	Термоэлектрические явления твердого тела
		Всего 52/1,44

6. Организация самостоятельной работы студентов (СРС).

Для получения глубоких и прочных знаний, твёрдых навыков и умений, необходима систематическая самостоятельная работа студента.

В рабочей программе предусмотрена самостоятельная работа для проработки лекционного (теоретического) материала при подготовке к контрольным мероприятиям:

II семестр

- рубежная аттестация 1-3 часа

2-3 часа

- подготовка к выполнению графика лабораторного практикума - 17 часов

III семестр

- рубежная аттестация 1 - 3 часа

2 - 3 часа

IV семестр

- - рубежная аттестация 1-3 часа

2-3 часа

- подготовка к выполнению графика лабораторного практикума 52 часов
- подготовка к практическим занятиям, выполнение домашних заданий (решение задач) 18 часов.

6.1. Темы для самостоятельной работы (рефераты)

Таблица 6.

		,
№ п/п	раздела дисци- плины	Содержание раздела
1	1	Сила как характеристика взаимодействия тел.
2	4	Уравнение сферической, упругой бегущей, стоячей волны.
3	1	Закон сохранения импульса и однородность пространства
4	1	Гироскоп
5	1	Границы применимости классической механики
6	1	Релятивистское сохранение длины и замедление времени
7	1	Качения тел. Особенности движения тела при движении качении.
8	2	Распределение Ферми-Дирака
9	2	Особенности агрегатного состояния вещества
10	2	Фазовые периоды
11	2	Особенности строения и назначение конденсаторов
12	3	Поляризация диэлектриков
13	3	Магнитное поле. Особая форма материи.
14	3	Диа - пора, ферро-магнетики и их свойства
15	3	Максвеловская трактовка явлений электромагнитной индукции
16	5	Особенности проводимости полупроводников
17	5	Характеристика основных состояний атома водорода
18	5	Уравнение Шрёдингера для стационарных и нестационарных состояний атома
		Всего 118/3,28

Учебно-методическое пособие

- 1. Трофимова Т.И. Курс Физики. М.: Academa. 2005.
- 2. Михайлов В.К. и др. Колебания. Волны. Оптика. М.: МГСУ, 2009.

7. Оценочных средства

- 1. Физические основы механики. Кинематика, динамика и статика.
- 2. Физические модели. Радиус вектор.
- 3. Поступательное движение. Скорость и ускорение.
- 4. Вращательное движение. Скорость и ускорение. Частота и период.
- 5. Масса. Сила. Импульс.
- 6. Момент силы. Момент импульса. Момент инерции.
- 7. Закон сохранения импульса, момента инерции.
- 8. Закон всемирного тяготения. Сила тяжести.
- 9. Сила трения. Силы в природе.
- 10. Работа. Мощность. Энергия.
- 11. Потенциальная, кинетическая энергия. Закон сохранения энергии.
- 12. Физика твердого тела. Деформация твердого тела.
- 13. Механика жидкостей и газов.
- 14. Релятивистская механика.

Образец билета к 1 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ имени академика М.Д.Миллионщикова

Аттестационный билет №	
дисциплина: «Физика»	

- 1. Введение в молекулярную физику. Нормальное давление. Температура.
- 2. Эмпирические законы идеального газа.
- 3. Основы кинетической теории идеального газа.

Заведующий кафедрой «Физика»	Успажиев Р.Т.
Доцент	Тепсаев И.С.
Билет рассмотрен и утвержден на заседании учебно-метод	ического совета кафедры «Физика» « » 2019

Вопросы ко второй рубежной аттестации.

- 4. Введение в молекулярную физику. Нормальное давление. Температура.
- 5. Эмпирические законы идеального газа.
- 6. Основы кинетической теории идеального газа.
- 7. Квадратичная, вероятная и средние скорости молекул.
- 8. Явление переноса. Диффузия.
- 9. Внутренняя энергия газа. Степень свободы.
- 10. Теплоемкость газа.
- 11. Первое начало термодинамики. Уравнение Майера.
- 12. Адиабатический процесс. Работы расширения газа.
- 13. Круговой процесс. КПД кругового процесса.
- 14. Энтропия. II и III начала термодинамики.

- 15. Сжижение газов. Закон Джоуля-Томсона.
- 13. Фаза. Фазовое состояние. Фазовый переход.
- 14. Тройная диаграмма состояния.
- 15. Жидкие и аморфные кристаллы.

Образец билета ко 2 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

- 1. Физические основы механики. Кинематика, динамика и статика.
- 2. Физические модели. Радиус вектор.
- 3. Поступательное движение. Скорость и ускорение.

Заведующий кафедрой «Физика» _	Успажиев Р.Т.	
Доцент	Тепсаев И.С.	
Билет рассмотрен и утвержден на засед	ании учебно-методического совета кафедры «Физика» « » 2	2019

Вопросы к экзамену.

- 1. Физические основы механики. Кинематика, динамика и статика.
- 2. Физические модели. Радиус вектор.
- 3. Поступательное движение. Скорость и ускорение.
- 4. Вращательное движение. Скорость и ускорение. Частота и период.
- 5. Масса. Сила. Импульс.
- 6. Момент силы. Момент импульса. Момент инерции.
- 7. Закон сохранения импульса, момента инерции.
- 8. Закон всемирного тяготения. Сила тяжести.
- 9. Сила трения. Силы в природе.
- 10. Работа. Мощность. Энергия.
- 11. Потенциальная, кинетическая энергия. Закон сохранения энергии.
- 12. Физика твердого тела. Деформация твердого тела.
- 13. Механика жидкостей и газов.
- 14. Релятивистская механика.
- 15. Введение в молекулярную физику. Нормальное давление. Температура.
- 16. Эмпирические законы идеального газа.
- 17. Основы кинетической теории идеального газа.
- 18. Квадратичная, вероятная и средние скорости молекул.
- 19. Явление переноса. Диффузия.
- 20. Внутренняя энергия газа. Степень свободы.
- 21. Теплоемкость газа.
- 22. Первое начало термодинамики. Уравнение Майера.
- 23. Адиабатический процесс. Работы расширения газа.
- 24. Круговой процесс. КПД кругового процесса.

- 25. Энтропия. Ии III начала термодинамики.
- 26. Сжижение газов. Закон Джоуля-Томсона.
- 27. Фаза. Фазовое состояние. Фазовый переход.
- 28. Тройная диаграмма состояния.
- 29. Жидкие и аморфные кристаллы.

Образец билета к экзамену.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕНЬЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

Аттестационный билет №_ дисциплина: «Физика»	
 Электризация тел. Электрический заряд. Закон сохранени Закон Кулона. Электрическое поле. Напряженность электрического поля 	-
Заведующий кафедрой «Физика»	Успажиев Р.Т.
Доцент	Тепсаев И.С.
Билет рассмотрен и утвержден на заседании учебно-методического со	вета кафедры «Физика» «»2019

Третий семестр Вопросы к первой рубежной аттестации

- 4. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 5. Закон Кулона.
- 6. Электрическое поле. Напряженность электрического поля. Силовые линии магнитного поля.
- 4. Работа поля при перемещении заряда.
- 5. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- 7. Поляризация диэлектриков. Напряженность поля в диэлектрике.
- 8. Электроемкость. Конденсаторы. Применение конденсаторов.
- 9. Энергия электростатического поля.
- 10. Электрический ток. Сила тока. Постоянный ток.
- 11. Закон Ома для участка цепи. Сопротивление проводника.
- 12. Типы соединения проводников.
- 13. Стронние силы. ЭДС. Закон Ома для полной цепи.
- 14. Закон Джоуля-Ленца. Работа тока. Мощность тока.
- 15. Электропроводность твердых тел. Природа тока в металлах.
- 16. Магнитное поле. Силовые линии магнитного поля. Напряженность.
- 17. Закон Био- Савара-Лапласа.
- 18. Сила Ампера. Взаимодействие параллельных токов.
- 19. Сила Лоренца.

Образец билета к 1 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ имени академика М.Д.Миллионщикова

- 1. Вещество в магнитном поле. Парамагнетики, диамагнетики.
- 2. Эффект Холла.
- 3. Циркуляция вектора В магнитного поля в вакууме.

Заведующий кафедрой «Физика»	Успажиев Р.Т.		
Доцент	Тепсаев И.С.		
Билот посемотной и утропулой на заселении унобио-метоли	несмого совета мафения «Физима» « м 2010		

Вопросы ко второй рубежной аттестации

- 1. Вещество в магнитном поле. Парамагнетики, диамагнетики.
- 2. Эффект Холла.
- 3. Циркуляция вектора В магнитного поля в вакууме.
- 4. Теорема Гаусса для поля вектора В.
- 5. Работа по перемещению проводника и контура с током в магнитном поле.
- 6. Электромагнитная индукция. Магнитный поток.
- 7. Закон электромагнитной индукции и правило Лоренца.
- 8. Самоиндукция. ЭДС- самоиндукции.
- 9. Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля.
- 10. Электромагнитное поле. Ток смещения. Вихревое поле.
- 11. Переменный ток. Действующее значения напряжения и силы тока.
- 12. Индуктивность и емкость в цепи переменного тока.
- 13. Закон Ома для цепи переменного тока.
- 14. Колебательный контур. Формула Томсона. Собственные колебания.
- 15. Свободные и вынужденные колебания. Электрические автоколебания.
- 16. Резонанс токов и напряжений.
- 17. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 18. Электромагнитные волны . Волновые уравнение.
- 19. Энергия электромагнитных волн. Опыты Герца.
- 20. Шкала электромагнитных волн.
- 21. Фотометрия. Основные фотометрические величины и их единицы.
- 22. Геометрическая оптика. Понятие светового луча законы отражение и преломление света.
- 23. Полное отражение света.
- 24. Преломление и отражение света на сферической границе двух сред.
- 25. Зеркала. Тонкие линзы. Формула линзы
- 26. Построение изображений в тонких в линзах и сферических зеркалах.

Образец билета ко 2 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

- 1. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2. Взаимодействие зарядов. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. Силовые линии магнитного поля.

Заведующий кафедрой «Физика»	Успажиев Р.Т.
Доцент _	Тепсаев И.С.
Билет рассмотрен и утвержден на заседа	нии учебно-методического совета кафедры «Физика» «»2019

Вопросы к зачету

- 2. Электризация тел. Электрический заряд. Закон сохранения заряда.
- 2. Взаимодействие зарядов. Закон Кулона.
- 3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. Силовые линии магнитного поля.
- 4. Теорема Гаусса для электростатического поля в вакууме.
- 5. Работа поля при перемещении заряда. Потенциал, разность потенциалов.
- 6. Напряженность как градиент потенциала.
- 7. Диэлектрики и их поляризация. Напряженность поля в диэлектрике.
- 8. Проводники в электростатическом поле.
- 9. Конденсаторы. Электроемкость. Применение конденсаторов.
- 10. Энергия электростатического поля.
- 11. Электрический ток. Сила тока. Постоянный ток.
- 12. Закон Ома для участка цепи. Сопротивление проводников.
- 13. Типы соединения проводников.
- 14. Стронние силы. ЭДС. Закон Ома для полной цепи.
- 15. Закон Джоуля Ленца. Работа тока. Мощность тока.
- 16. Электропроводность твердых тел. Природа тока в металлах.
- 17. Магнитное поле. Силовые линии магнитного поля. Напряженность.
- 18. Закон Био-Савара-Лапласа.
- 19. Взаимодействие токов. Сила Ампера.
- 20. Сила Лоренца.
- 21. Эффект Холла.
- 22. Циркуляция вектора В магнитного поля в вакууме.
- 23. Теорема Гаусса для поля вектора В.
- 24. Работа по перемещению проводника и контура с током в магнитном поле.
- 25. Вещество в магнитном поле. Магнитная Проницаемость. Парамагнетики, диамагнетики.
- 26. Природа ферромагнетизма. Постоянные магниты.
- 27. Электромагнитная индукция. Магнитный поток.
- 28. Закон электромагнитной индукции и правило Лоренца.
- 29. Самоиндукция. ЭДС самоиндукций.
- 30. Индуктивность проводника и взаимная индуктивность. Энергия магнитного поля. 26.Электромагнитное поле. Ток смещения. Вихревое поле.
- 31. Переменный ток. Действующее значения напряжения и силы тока.

- 32. Индуктивность и емкость в цепи переменного тока.
- 33. Закон Ома для цепи переменного тока.
- 34. Колебательный контур. Формула Томсона. Собственные колебания.
- 35. Свободные и вынужденные колебания. Электрические автоколебания.
- 36. Резонанс токов и напряжений.
- 37. Характеристики колебания процесса, период, частота, амплитуда, фаза колебаний.
- 38. Электромагнитные волны .Волновые уравнение.
- 39. Свойства электромагнитных волн. Опыты Герца.
- 40. Шкала электромагнитных волн.
- 41. Фотометрия. Основные фотометрические величины и их единицы.
- 42. Геометрическая оптика. Понятие светового луча законы отражение и преломление света. Полное отражение света.
- 43. Преломление и отражение света на сферической границе двух сред.
- 44. Зеркала. Тонкие линзы. Формула линзы
- 45. Построение изображений в тонких в линзах и сферических зеркалах, зеркал и

Образец билета к зачету.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

Аттестационный билет №	
дисциплина: «Физика»	

- 1. Явление интерференции света. Временная и пространственная когерентность.
- 2. Интерференция в тонких пленках.
- 3. Явление дифракции. Принцип Гюйгенса Френеля

Заведующий кафедрой «Физика»	Успажиев Р.Т.		
Доцент	Тепсаев И.С.		
Билет рассмотрен и утвержден на заседании учебно-мето,	дического совета кафедры «Физика» « » 2019		

Четвертый семестр. Вопросы к первой рубежной аттестации

- 4. Явление интерференции света. Временная и пространственная когерентность.
- 5. Интерференция в тонких пленках.
- 6. Явление дифракции. Принцип Гюйгенса Френеля
- 7. Метод зон Френеля. Дифракция Френеля.
- 8. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 9. Дифракционная решетка.
- 10. Дифракция рентгеновских лучей на кристаллах.
- 11. Поляризация света. Поляризаторы и анализаторы.
- 12. Анализ поляризованного света. Вращение плоскости поляризации.
- 13. Явление дисперсии света.
- 11 .Поглошение света.
- 13. Эффект Доплера.
- 14. Эффект Вавилова Черенкова.

- 15. Тепловое излучение
- 16.3аконы равновесного теплового излучения.
- 17. Гипотеза Планка. Формула Планка
- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект. Законы Столетова.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.

Образец билета к 1 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

Аттестационный билет №	
дисциплина: «Физика»	

- 1. Масса и импульс фотона. Давление света.
- 2. Эффект Комптона.
- 3. Волновая функция.

Заведующий кафедрой «Физика» _	Успа	Успажиев Р.Т.		
Доцент	Тепс	Тепсаев И.С.		
Билет рассмотрен и утвержден на засед	ании учебно-методического совета кафедры «Фи	зика» « » 2019		

Вопросы ко 2 аттестации

- 4. Масса и импульс фотона. Давление света.
- 5. Эффект Комптона.
- 6. Волновая функция.
- 7. Волна де- Бройля. Соотношения неопределенностей.
- 8. Уравнение Шредингера.
- 9. Уравнение Шредингера для стационарных состояний.
- 10. Туннельный эффект.
- 11. Потенциальный ящик.
- 12. Линейный гармонический осциллятор.
- 13. Двойственность представлений о веществе. Корпускулярно- волновой дуализм.
- 14. Опыты Резерфорда. Линейчатые спектры атомов.
- 15. Опыты Франка и Герца. Модель атома водорода Бора- Резерфорда.
- 16. Магнитный момент электрона. Спектр атома водорода.
- 17. Принцип Паули. Электронные оболочки. Периодическая система элементов Менделеева.
- 15. Спектры многоэлектронных атомов. Характеристические рентгеновские, спектры.
- 16. Закон Мозли. Водородоподобные спектры.
- 17. Природа химической связи. Молекулярные спектры. Комбинационное рассеяние света. Люминесценция.
- 18. Спонтанное и вынужденное излучения. Лазеры.
- 19. Естественная радиоактивность. Закон радиоактивного распада.
- 20. Состав ядра. Нуклоны. Заряд и массовое число ядра. Энергии и связи ядра.

- 21. Изотопы, Искусственные превращения ядер, *а-* и В-распада, у-излучеиие. Ядерные реакции.
- 22. Оболочечная и капельная модели ядра.
- 23. Деление ядер. Цепная реакция. Ядерные реакции на тепловых и быстрых нейтронах. Реакция синтеза, проблема управляемого термоядерного синтеза.
- 24. Фундаментальные взаимодействия. Классификация элементарных частиц.
- 25. Взаимодействие элементарных частиц и законы сохранения. Частицы и античастицы.
- 26. Барионы и мезоны. Резонансы Космические лучи.
- 27. Фундаментальные частицы. Частицы-участники и частицы-переносчики взаимодействий.

Образец билета ко 2 рубежной аттестации.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

Аттестационный билет № дисциплина: «Физика»	
1. Фотометрия. Основные фотометрические величины и их единицы.	
2. Геометрическая оптика. Понятие светового луча законы отражение и преломление св	вета.
Полное отражение света.	

Доцент	Тепсаев И.С.		
Билет рассмотрен и утвержден на засед	ании учебно-методического совета кафедры «Физика» « »	2019	

Успажиев Р.Т.

Вопросы к экзамену

- 3. Фотометрия. Основные фотометрические величины и их единицы.
- 4. Геометрическая оптика. Понятие светового луча законы отражение и преломление света. Полное отражение света.
- 5. Преломление и отражение света на сферической границе двух сред.
- 6. Зеркала. Тонкие линзы. Формула линзы

Заведующий кафедрой «Физика»

- 7. Построение изображений в тонких в линзах и сферических зеркалах. Аберрации линз зеркал и способы их устранении.
- 8. Явление интерференции света. Временная и пространственная когерентность. Интерференция в тонких пленках.
- 9. Явление дифракции. Принцип Гюйгенса Френеля
- 10. Метод зон Френеля. Дифракция Френеля.
- 11. Дифракции Фраунгофера на одной щели и на дифракционной решетки.
- 12. Дифракционная решетка.
- 13. Дифракция рентгеновских лучей на кристаллах. Условие Вульфа Брэгга.
- 14. Поляризация света. Поляризаторы и анализаторы.

Двойное лучепреломление.

- 15. Анализ поляризованного света. Вращение плоскости поляризации.
- 16. Явление дисперсии света. Нормальная и аномальная дисперсия.
- 15. Тепловое излучение
- 16. Законы равновесного теплового излучения.
- 17. Гипотеза Планка. Формула Планка

- 18. Квант излучения. Энергия кванта излучения.
- 19. Фотоэлектрический эффект.
- 20. Уравнение Эйнштейна для внешнего фотоэффекта.
- 21. Законы Столетова.
- 22. Поглощение света.
- 23. Эффект Доплера в оптике. Эффект Вавилова Черенкова.
- 24. Фотоэлектрический эффект. Уравнение Эйнштейна для фотоэффекта.
- 25. Тормозное рентгеновское излучение. Эффект Комптона.
- 26. Тепловое излучение и их характеристики. Закон Кирхгофа.

Образец билета к экзамену

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

имени академика М.Д.Миллионщикова

Экзаменанионний гипет № 1

Экзаменационный билет № 1 дисциплина: «Физика»

- 1. Описание движения тел. Траектория, перемещение и пройденный путь.
- 2. Уравнение Ван-дер-Ваальса для реальных газов.
- 3.Вычислить работу, совершаемую на пути s = 12 м силой, равномерно возрастающей с пройденным расстоянием, если в начале пути сила F(0) = 10 H, в конце пути F(s) = 46 H.

Заведующий кафедрой «Физика» _.	Успажиев Р.Т.		
Доцент	Тепсаев И.С.		
Билет рассмотрен и утвержден на заседании учебно-методического совета кафедры «Физика» «»2019			

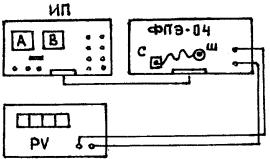
Текущий контроль

Контрольная работа № 1.

- 1. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением **в**. Определить тангенциальное ускорение a_x точки, если известно, что за время / = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение a_x , 2,7 м/с $^{*\,1\,2}$.
- 2. Шар массой ш /=2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу тг большего шара. Удар считать абсолютно упругим, прямым, центральным.
- 3. Какая работа A должна быть совершена при поднятии с земли материалов для постройки цилиндрической трубы высотой h 40 м, наружным диаметром D = 3,0 м и внутренним диаметром d = 2,0 м? Плотность материала p принять равной 2,8 10 кг/м.
- 4. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами $\tau/2$ = 0,2 кг и mz = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг, а его ось движется вертикально вверх с ускорением a -2 м/с? Силами трения и проскальзывания нити по блоку пренебречь.
- 5. Однородный стержень длиной i=1,0 м и массой M=0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на Y_3 -C, абсолютно упруго ударяет пуля массой m=5 кг, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол $a=60^\circ$. Определить скорость пули.

- 6. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять, что радиус *R*\$ Земли в 6 раз меньше веса тела на Земле.
- 2. Найти период полураспада Ty_2 радиоактивного изотопа, если его активность за время t = 10 сут уменьшилась на 24 % по срав нению с первоначальной. F3:

Раздел 1. Механика


S: В системе СИ путь измеряется

- +: В Метрах
- -: В Градусах
- -: В Сантиметрах В Ньютонах

Изучение магнитного поля соленоида с помощью датчика Холла

В данной работе рассматривается метод определения индукции магнитного поля, основанный на явлении Холла.

- 1. Цель работы: ознакомиться с методом Холла для измерения индукции магнитного поля.
- 2. Приборы и принадлежности: модуль $\Phi\Pi$ 3-04, цифровой вольтметр PV, источник питания ИП.
- 3. Схема рабочей установки.

4. Рабочие формулы.

$$\vec{B} = \mu_0 \vec{H}; \qquad H_z = In; \qquad \Delta \varphi_x = R_x jBa = R_x \frac{i\partial B}{h_o};$$

где $\Delta \phi_{_{\scriptscriptstyle X}}$ - ЭДС датчика Холла; $R_{_{\scriptscriptstyle X}}$ - постоянная Холла; j- плотность тока;

 i_{∂} - управляющий датчиком ток; h_{∂} - толщина датчика в направлении магнитного поля; B - индукция магнитного поля.

В этой работе использованы следующие постоянные величины:

$$i_{\partial} = 90 MA; \ h_{\partial} = 0.2 MM.$$

5. Рабочие таблицы.

		ЭДС датчика		Постоянная
Nº	Ток соленоида	Холла	Индукция	Холла
измерения	I_c, A	$\Delta arphi_{_{X}}$, B	$B \times 10^{-3}$,	$R_{x,} \frac{B \cdot M}{T \pi \cdot A}$
			Тл	T_{x} , $T_{\pi} \cdot A$
1	0,5	0,120	7,8	0,034
2	1,0	0,180	15,5	0,026
3	1,5	0,245	23,4	0,023
4	2,0	0,314	31,2	0,022

Задание 5.1. Определение зависимости магнитной индукции в средней точке на оси соленоида и тарировка датчика Холла.

Число витков на единицу длины соленоида равно

$$n = \frac{N}{L} = \frac{2063}{0,167} = 12353,3 M^{-1}.$$

При силе тока в соленоиде, равном соответственно 0.5A, 1.0A, 1.5A и 2.0A измеряем с помощью цифрового вольтметра ЭДС Холла в центре соленоида и записываем в таблицу 5.1. По формулам (1.10) и (1.1) (см. метод. указания к лаб. раб. № 2.6) вычисляем индукцию магнитного поля B при заданных значениях силы тока:

$$B_1=4\cdot 3,14\cdot 10^{-7}\cdot 0,5\cdot 12353\approx 7,8\cdot 10^{-3}T\pi;$$

$$B_2=4\cdot 3,14\cdot 10^{-7}\cdot 1,0\cdot 12353=15,5\cdot 10^{-3}T\pi;$$

$$B_3=4\cdot 3,14\cdot 10^{-7}\cdot 1,5\cdot 12353=23,4\cdot 10^{-3}T\pi;$$

$$B_4=4\cdot 3,14\cdot 10^{-7}\cdot 2,0\cdot 12353=31,2\cdot 10^{-3}T\pi.$$
 Эти значения записываем в таблицу 5.1. Строим график зависимости $B=f(I_c)$ (рис. 5.1).

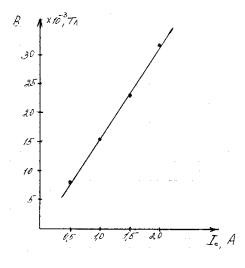


Рис. 5.1.

Для каждого измерения по формуле (3.1) рассчитываем постоянную Холла $R_x = \frac{\Delta \varphi_x \cdot h_\partial}{i_\partial \cdot B}$:

$$R_{x1} = \frac{0.120 \cdot 2 \cdot 10^{-4}}{9 \cdot 10^{-2} \cdot 7.8 \cdot 10^{-3}} = 0.034 \frac{B \cdot M}{T \pi \cdot A}.$$

$$R_{x2} = \frac{0.180 \cdot 2 \cdot 10^{-4}}{9 \cdot 10^{-2} \cdot 15.5 \cdot 10^{-3}} = 0.026 \frac{B \cdot M}{T \pi \cdot A}.$$

$$R_{x3} = \frac{0.245 \cdot 2 \cdot 10^{-4}}{9 \cdot 10^{-2} \cdot 23.4 \cdot 10^{-3}} = 0.023 \frac{B \cdot M}{T \pi \cdot A}.$$

$$R_{x4} = \frac{0.314 \cdot 2 \cdot 10^{-4}}{9 \cdot 10^{-2} \cdot 31.2 \cdot 10^{-3}} = 0.022 \frac{B \cdot M}{T \pi \cdot A}.$$

Среднее значение постоянной Холла равно $\overline{R} = 0.02625 \ \frac{B \cdot M}{T \pi \cdot A}$.

По данным табл. 5.1 строим график зависимости $\Delta arphi_{_{\mathcal{X}}} = f(I_{_{C}})$ (рис. 5.2).

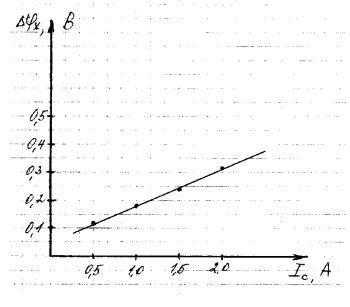


Рис. 5.2.

Задание 5.2. Исследование зависимости индукции магнитного поля от координаты Z , отсчитываемой от средней точки.

Установив силу тока в катушке $I_c=1,5A$ и перемещая шток с датчиком Холла вдоль оси соленоида с интервалом $\Delta Z=1cM$, измеряем ЭДС Холла. Полученные данные записываем в табл. 5.2. Для каждого положения датчика, используя в расчетах постоянную Холла, полученную в задании 5.1. вычисляем индукцию поля B из формулы (3.1): $B=\frac{\Delta \phi_x \cdot h_\partial}{R_x \cdot i_\partial}$.

Например:
$$B_1 = \frac{0,307 \cdot 2 \cdot 10^{-4}}{0,022 \cdot 9 \cdot 10^{-2}} = 31 \cdot 10^{-3} T \pi.$$

$$B_2 = \frac{0,306 \cdot 2 \cdot 10^{-4}}{0,022 \cdot 9 \cdot 10^{-2}} = 30,9 \cdot 10^{-3} T \pi.$$

$$B_3 = \frac{0,305 \cdot 2 \cdot 10^{-4}}{0,022 \cdot 9 \cdot 10^{-2}} = 30,8 \cdot 10^{-3} T \pi.$$

$$B_4 = \frac{0,302 \cdot 2 \cdot 10^{-4}}{0,022 \cdot 9 \cdot 10^{-2}} = 30,5 \cdot 10^{-3} T \pi.$$

Результаты расчетов заносим в табл. 5.2. По данным табл. 5.2 строим график B=f(Z) при силе тока в соленоиде $I_c=1{,}5A$ (рис. 5.3).

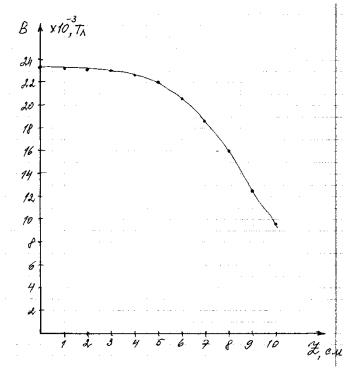


Рис. 5.3.

Вычислим среднее значение и среднюю абсолютную погрешность магнитной индукции B при токе в соленоиде $I_{_{C}}=$ 1,5 A :

$$\overline{B} = 19.7 \cdot 10^{-3} T_{\pi}; \qquad \Delta \overline{B} = 3.93 \cdot 10^{-3} T_{\pi}.$$

Рассчитаем относительную погрешность этих измерений по формуле:

$$E = \frac{\Delta \overline{B}}{\overline{B}} \cdot 100\%$$
; $E = \frac{3.93 \cdot 10^{-3}}{19.7 \cdot 10^{-3}} \cdot 100\% \approx 20\%$.

- 8. Учебно-методическое и информационное обеспечение дисциплины
- 8. 1 Основная литература
 - 1. Савельев И.В. Курс общей физики. М.: Астрела, 2006. Кн. 1-5
 - 2. Детлаф А.А., Яворский Б.М. Курс физики. М.: Academa, 2005.
 - 3. Трофимова Т.И. Курс физики. М.: Academa, 2007.
 - 4. Курс физики под ред. В.Н. Лазовского. М.-С.-П.: Лань, 2006.
 - 5. Михайлов В.К. и др. Колебания. Волны. Оптика. М.: МГСУ, 2009.
 - 6. Волькенштейн В.С. Сборник задач по общей физике. М.:Наука, 2006.
- 8.2. Дополнительная литература
 - 1. Гершензон Е.М., Сборник задач по общей физике, Гершензон Е.М. М.: Академия, 2002.
 - 2. Киттель Ч., Механика. Берклеевский курс физики, Киттель Ч., Найт У., Рудерман М. СПб.: Лань, 2005.
 - 3. Ландсберг Г.С., Оптика: учебное пособие для вузов/ Ландсберг Г.С. М.: Физматлит, 2006.
 - 4. Методические указания (рекомендации) к выполнению лабораторных работ, к решению задач.

5. Лекционный материал, видеоматериал и др.

9. Материально-техническое обеспечение дисциплины

- 1. Лекционные демонстрации по разделам курса физики
- 2. Учебные лаборатории:
- № 1-03 «Механика и молекулярная физика»
- № 1-15 «Электромагнетизма»
- № 0-13 «Оптика. Атомная физика»
- № 0-23 «Физика твердого тела»

Составитель: Тепсаев И.С.

Согласовано:
Заведующий кафедрой «Физика»

Успажиев Р.Т

Заведующий кафедрой АТПП

Хакимов З.Л.

Директор ДУМР Магомаева М.А.