Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Магомед Шин ИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: Ректор

Дата подписания: 25.11.2023 11:02:30 Уникальный программный ключ:

РОССИЙСКОЙ ФЕДЕРАЦИИ

^{236bcc35c296} РОЗНЕНСКИЙ СТОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

имени академика М.Д. Миллионщикова

РАБОЧАЯ ПРОГРАММА

дисциплины

«Основы механики сплошных сред»

Направление подготовки

15.03.02 Технологические машины и оборудование

Профили

«Машины и оборудование нефтяных и газовых промыслов» «Оборудование нефтегазопереработки»

Квалификация

бакалавр

1. Цели и задачи дисциплины

Целями освоения дисциплины является изучение математического аппарата механики сплошной среды, освоение практических аспектов применения векторного и тензорного анализов, основ математического моделирования механики сплошных сред.

2. Место дисциплины в структуре образовательной программы

Для изучения курса необходимы предварительные знания: алгебры, аналитической геометрии, дифференциальных уравнений, физики, теоретической механики, сопротивление материалов.

Дисциплины, для которых данная дисциплина является предшествующей: математическое моделирование в машиностроении, термодинамика.

3. Требования к результатам освоения дисциплины

проектно-конструкторская деятельность:

способностью применять способы рационального использования сырьевых, энергетических и других видов ресурсов в машиностроительных производствах, выбирать основные и вспомогательные материалы для изготовления их изделий, способы реализации основных технологических процессов, аналитические и численные методы при разработке их математических моделей, а также современные методы разработки малоотходных, энергосберегающих и экологически чистых машиностроительных технологий (ПК-1);

- -способностью использовать методы стандартных испытаний по определению физикомеханических свойств и технологических показателей материалов и готовых машиностроительных изделий, стандартные методы их проектирования, прогрессивные методы эксплуатации изделий (ПК-2);
- -способностью участвовать в постановке целей проекта (программы), его задач при заданных критериях, целевых функциях, ограничениях, разработке структуры их взаимосвязей, определении приоритетов решения задач с учетом правовых, нравственных аспектов профессиональной деятельности (ПК-3);
- -способностью участвовать в разработке: проектов изделий машиностроения, средств технологического оснащения и автоматизации машиностроительных производств технологических процессов их изготовления;
- -машиностроительных производств, их модернизации; средств технологического оснащения, автоматизации и диагностики с учетом технологических, эксплуатационных, эстетических, экономических, управленческих параметров, и использованием современных информационных технологий и вычислительной техники, а также выбирать средства автоматизации и диагностики и проводить диагностику состояния и динамики

производственных объектов машиностроительных производств с применением необходимых методов и средств анализа (ПК-4);

-способностью участвовать: в проведении предварительного технико-экономического анализа проектных расчетов; разработке (на основе действующих нормативных документов) проектной и рабочей технической документации (в том числе в электронном виде) машиностроительных производств, технической документации для регламентного эксплуатационного обслуживания их средств и систем; в мероприятиях по контролю соответствия разрабатываемых проектов и технической документации действующим стандартам, техническим условиям и другим нормативным документам; оформлением законченных проектно-конструкторских работ (ПК-5);

В результате освоения дисциплины обучающийся должен:

3 нать: структуру, основы методов моделирования, математического аппарата механики сплошных сред.

Уметь: применять полученные знания основ моделирования и математического аппарата МСС.

Владеть: навыками использования векторного и тензорного анализа, математического моделирования в МСС.

4. Объем дисциплины и виды учебной работы

Таблица 1

		Всего		Семестр	
Вид учебно	ой работы	часов/зач.ед.		7	8
		ОФО	О/3ФО	ОФО	О/3ФО
Контактная работа (всего)		54/1,5	8	54	8
В том числе:					
Лекции		36/1	4	36	4
Практические занятия		18/0,5	4	18	4
Самостоятельная рабо	ота (всего)	54/1,5	,5 100/2,7 54 100		100
В том числе:					
И (или) другие виды самостоятельной работы:		36/1	72/2	36	72
Вид отчетности			3a	чет	
Общая трудоемкость	ВСЕГО в часах	108			
дисциплины	в зач., ед.	3			

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий:

Таблица 2

№	Наименование раздела	Лекц.,	Всего
п/п	дисциплины по семестрам	зан. часы	часов
1	Введение. Математический аппарат механики сплошных сред.	6	6
2	Основные понятия, уравнения и соотношения механики сплошных сред.	14	14
3	Модели сплошных сред, их физические соотношения	8	8
4	Постановка задачи механики сплошных сред	8	8

5.2. Лекционные занятия

Таблица 3

№	Наименование раздела			
п/п	дисциплины	Содержание раздела		
	Введение.	Характер математических объектов математического		
	Математический	аппарата механики сплошных сред.		
	аппарат механики	Основные элементы тензорного исчисления		
1	сплошных сред.	Характеристики системы координат.		
1		Преобразования координат и базисных векторов		
		Понятие тензора второго ранга.		
		Элементы тензорной алгебры		
		Элементы тензорного анализа.		

	Основные понятия,	Представление движения материального континуума.
	уравнения и	Система отсчета наблюдателя и сопутствующая система
	соотношения механики	отсчета. Индивидуализация точек материального
	сплошных сред.	континуума.
		Сущность точек зрения Лагранжа и Эйлера на изучение
		движения сплошной среды.
		Основы кинематики материального континуума. Теория
		деформаций.
		Тензор деформаций – характеристика.
		деформированного состояния материального
		континуума
		Инварианты тензора деформаций.
2		Шаровой тензор деформаций и девиатор тензора
		деформаций.
		Понятие об уравнениях совместности деформаций.
		Инварианты тензора напряжений
		Шаровой тензор напряжений и девиатор тензора
		напряжений.
		Условия равновесия материального континуума.
		Законы сохранения в механике сплошных сред.
		Элементы термодинамики сплошных сред.
		Полная, локальная и конвективная производные.
		Законы сохранения массы – уравнения неразрывности.
		Баланс механической энергии – теорема «живых сил».
		1

	Модели сплошных сред,	Понятия модели сплошной среды
	их физические	Физическое и механическое поведение деформируемых
	соотношения.	сред.
		Физическое поведение деформируемых сред. Уравнение
		состояния.
Простые модели		Простые модели сплошных сред.
3		Идеальная среда (идеальная жидкость или идеальный
		газ).
		Вязкая жидкость.
		Упругая среда.
		Жесткопластичная среда.
		Модель упругопластичной среды.
		Теория пластического течения.
	Постановка задачи	Общие принципы постановки задач.
	механики сплошных	Выбор системы отсчета и системы координат.
	сред.	Выбор модели сплошной среды.
4		Составление системы исходных уравнений.
		Постановка задач механики идеальной жидкости и газа.
		Постановка задач механики вязкой жидкости.
		Постановка задач теории упругости.

5.3. Лабораторный практикум.

не предусмотрен

5.4. Практические занятия (семинары)

Таблица 4

№	Наименование раздела	Практ.,	Всего
п/п	дисциплины по семестрам	зан. часы	часов
1	Введение. Математический аппарат механики сплошных сред.	6	6
2	Основные понятия, уравнения и соотношения механики сплошных сред.	6	6
3	Модели сплошных сред, их физические соотношения	6	6

6. Самостоятельная работа студентов по дисциплине

6.1. Темы по самостоятельной работе:

- 1. Математический аппарат механики сплошных сред.
- 1.1. Основные элементы векторного исчисления.
- 1.2. Элементы векторной алгебры.
- 1.3. Элементы векторного анализа.
- 1.4. Ряд тензоров.
- 2. Основные понятия, уравнения и соотношения механики сплошных сред.
- 2.1. Главные оси деформации и главные деформации. Геометрическое представление тензора деформаций.
- 2.2. Тензор скоростей деформаций.
- 2.3. Теория напряжений.
- 2.4. Напряжение мера интенсивности внутренних сил
- 2.5.Тензор напряжений характеристика напряженного состояния материального континуума.
- 2.6. Главные оси, главные площадки и главные значения тензора напряжений. Геометрическое представление тензора напряжений.
- 2.7. Закон сохранения импульса уравнения неразрывности.
- 2.8. Закон сохранения энергии при отсутствии тепловых явлений.
- 2.9. Закон сохранения энергии при наличии тепловых явлений. Первый закон термодинамики, уравнение энергии.
- 2.10. Второй закон термодинамики, обратимые и необратимые процессы, энтропия.
- 3. Модели сплошных сред, их физические соотношения.
- 3.1. Механическое поведение деформируемых сред. Диаграмма механического поведения. Понятие о реономных и склерономных свойствах.
- 3.2. Деформационная теория пластичности (теория малых упругих деформаций).
- 3.3. Критерий пластичности и поверхность пластичности.
- 4. Постановка задачи механики сплошных сред.
- 4.1. Выбор основных неизвестных и переход к системе разрешающих уравнений.
- 4.2. Начальные и граничные условия.
- 4.3.Постановка задачи о динамическом взаимодействии упругопластических сред.
- 6.2. Перечень учебно-методического обеспечения для самостоятельной работы студентов

- 1. Спорыхин А. Н. Ведение в механику сплошной среды. Методические указания к решению задач / А. Н. Спорыхин, М. Ю. Мяснянкин, А. С. Чеботарев. Воронеж.: Изд-во ВГУ, 2004 г. -25 с.
- 2. М.А. Саидов. Методические указания к решению задач по дисциплине «Механика сплошных сред», ГОУ ВПО «ГГНТУ», 2018г. -36 с.

7. Оценочные средства

Вопросы к 1 ой рубежной аттестации;

- 1. Характер математических объектов математического аппарата механики сплошных сред.
- 2. Основные элементы тензорного исчисления
- 3. Характеристики системы координат.
- 4. Преобразования координат и базисных векторов
- 5. Понятие тензора второго ранга.
- 6. Система отсчета наблюдателя и сопутствующая система отсчета.
- 7. Индивидуализация точек материального континуума.
- 8. Сущность точек зрения Лагранжа и Эйлера на изучение движения сплошной среды.
- 9. Тензор деформаций характеристика. Деформированного состояния материального континуума.
- 10. Инварианты тензора деформаций.
- 11. Шаровой тензор деформаций и девиатор тензора деформаций.
- 12. Понятие об уравнениях совместности деформаций.
- 13. Инварианты тензора напряжений
- 14. Шаровой тензор напряжений и девиатор тензора напряжений.
- 15. Условия равновесия материального континуума.
- 16. Законы сохранения в механике сплошных сред. Элементы термодинамики сплошных сред.
- 17. Полная, локальная и конвективная производные.
- 18. Законы сохранения массы уравнения неразрывности.
- 19. Баланс механической энергии теорема «живых сил».

ОБРАЗЕЦ БИЛЕТА К 1 РУБЕЖНОЙ АТТЕСТАЦИИ

	Билет №			
No	Задание	Баллы		
1	Опишите Характер математических объектов математического аппарата механики сплошных сред.	4		
2	Понятие тензора второго ранга.	4		

2	Сущность точек зрения Лагранжа и Эйлера на изучение движения	1				
3	сплошной среды.					
4	Дайте понятие об уравнениях совместности деформаций.					
5	Баланс механической энергии – теорема «живых сил».	4				

Вопросы ко 2 ой рубежной аттестации;

- 1.Понятия модели сплошной среды.
- 2. Физическое и механическое поведение деформируемых сред.
- 3. Физическое поведение деформируемых сред. Уравнение состояния.
- 4.Простые модели сплошных сред.
- 5. Идеальная среда (идеальная жидкость или идеальный газ).
- 6. Вязкая жидкость.
- 7. Упругая среда.
- 8. Жесткопластичная среда.
- 9. Модель упругопластичной среды.
- 10. Теория пластического течения.
- 11.Общие принципы постановки задач.
- 12. Выбор системы отсчета и системы координат.
- 13. Выбор модели сплошной среды.
- 14. Составление системы исходных уравнений.
- 15.Постановка задач механики идеальной жидкости и газа.
- 16.Постановка задач механики вязкой жидкости.
- 17. Постановка задач теории упругости.

ОБРАЗЕЦ БИЛЕТА К 2 РУБЕЖНОЙ АТТЕСТАЦИИ

	Билет №			
No	Задание	Баллы		
1	В чем заключаются понятия моделей сплошной среды.	4		
2	Чем характеризуется идеальная среда (идеальная жидкость или идеальный газ).	4		
3	Общие принципы постановки задач в механике сплошных сред	4		
4	Перечислите основные признаки упругой среды.	4		
5	Сущность постановки задач теории упругости	4		

Вопросы к зачету;

1. Преобразования координат и базисных векторов.

- 2.Понятие тензора второго ранга. Ряд тензоров.
- 3.Система отсчета наблюдателя и сопутствующая система отсчета. 4.Индивидуализация точек материального континуума.
- 5. Сущность точек зрения Лагранжа и Эйлера на изучение движения сплошной среды.
- 6. Тензор деформаций характеристика деформированного состояния материального континуума.
- 7. Главные оси деформации и главные деформации. Геометрическое представление тензора деформаций.
- 8.Инварианты тензора деформаций.
- 9. Шаровой тензор деформаций и девиатор тензора деформаций.
- 10. Понятие об уравнениях совместности деформаций.
- 11. Тензор скоростей деформаций.
- 12. Напряжение мера интенсивности внутренних сил.
- 13.Тензор напряжений характеристика напряженного состояния материального континуума
- 14. Главные оси, главные площадки и главные значения тензора напряжений. Геометрическое представление тензора напряжений
- 15. Инварианты тензора напряжений
- 16.Инварианты тензора напряжений
- 17. Шаровой тензор напряжений и девиатор тензора напряжений
- 18. Условия равновесия материального континуума
- 19. Полная, локальная и конвективная производные
- 20. Законы сохранения массы уравнения неразрывности
- 21. Закон сохранения импульса уравнения неразрывности
- 22. Баланс механической энергии теорема «живых сил»
- 23. Закон сохранения энергии при отсутствии тепловых явлений
- 24. Закон сохранения энергии при наличии тепловых явлений. Первый закон термодинамики, уравнение энергии
- 25. Второй закон термодинамики, обратимые и необратимые процессы, энтропия
- 26. Физическое и механическое поведение деформируемых сред
- 27. Физическое поведение деформируемых сред. Уравнение состояния.
- 28. Механическое поведение деформируемых сред. Диаграмма механического поведения. Понятие о реономных и склерономных свойствах.
- 29. Идеальная среда (идеальная жидкость или идеальный газ).
- 30. Вязкая жидкость.

- 31. Упругая среда.
- 32. Жесткопластичная среда.
- 33. Модель упругопластичной среды.
- 34. Деформационная теория пластичности (теория малых упругих деформаций).
- 35. Критерий пластичности и поверхность пластичности.
- 36. Теория пластического течения.
- 37. Выбор системы отсчета и системы координат.
- 38. Выбор модели сплошной среды.
- 39. Составление системы исходных уравнений.
- 40. Выбор основных неизвестных и переход к системе разрешающих уравнений.
- 41. Начальные и граничные условия.
- 42. Постановка задач механики идеальной жидкости и газа.
- 43. Постановка задач механики вязкой жидкости.
- 44. Постановка задач теории упругости.
- 45. Постановка задачи о динамическом взаимодействии упругопластических сред.

ОБРАЗЕЦ БИЛЕТА К ЗАЧЕТУ

МИНИСТЕРСТВО ВО и Науки РФ ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Утверждаю: Зав. кафедрой Билет № 1 Зачет по дисциплине «Механика сплошных сред» 1. Контравариантные компоненты вектора. Инвариантность вектора относительно преобразования системы координат. 2. Задача: Определите объем параллелепипеда, построенного на отложенных от одной точки векторах a = 1i + 2j + 3k, b = -2i + 3j, c = 2i - 5j + 2kПреподаватель протокол № ____ от ____ г.

ПРИМЕР БИЛЕТА ТЕОРЕТИЧЕСКОГО КОЛЛОКВИУМА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

No	Содержания задания	Балл
1	Основные гипотезы сплошных сред	3
2	Понятия и примеры криволинейных систем координат	1

3	Определите объем параллелепипеда, построенного на отложенных от одной точки векторах $a=1i+2j+3k,\ b=-2i+3j,\ c=2i-5j+2k$	2
4	Постройте векторные линии поля скорости движения частиц абсолютно твердого тела при вращении его вокруг закрепленной оси.	3
5	Использование векторного символического дифференциального оператора Гамильтона при проведении дифференциальных операций первого порядка с векторами в декартовой прямоугольной системе координат.	3
6	Метрические коэффициенты основного базиса и соответствующая метрическая матрица.	3
7	Контравариантные компоненты вектора. Инвариантность вектора относительно преобразования системы координат.	5
8	Операция умножения тензора произвольного порядка на скаляр	2
9	Чем объясняется тот факт, что компоненты дискриминантного тензора с любыми двумя одинаковыми индексами равны нулю.	4
10	Теорема Остроградского-Гаусса в тензорном анализе (формулировка и запись в тензорном виде)	4

8. Учебно-методическое и информационное обеспечение дисциплины

- а) Основная литература:
- 1. Ентов В. М. Механика сплошной среды и её применение в газонефтедобычи / В. М. Ентов, Е. В. Гливенко. – М.: Недра, 2008. – 204 с.
- 2. Седов Л. И. Механика сплошной среды / Л. И. Седов Учеб. для вузов. 6-е изд. СПб.: Лань, 2004. 560с
- 3. Бабкин А.В., Селиванов В.В. Основы механики сплошных сред: Учебник для втузов. -2-е изд., испр. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 376 с.
- 4. Дж. Мейз. Теория и задачи механики сплошной среды / Дж. Мейз. М.: Мир, 1974. 318 с.
- б) Дополнительная литература:
- 1. Спорыхин А. Н. Ведение в механику сплошной среды. Методические указания к решению задач /А. Н. Спорыхин, М. Ю. Мяснянкин, А. С. Чеботарев. Воронеж.: Изд-во ВГУ, 2004 г. -25 с.
- 2. М.А. Саидов. Методические указания к решению задач по дисциплине «Механика сплошных сред», ГОУ ВПО «ГГНТУ», 2018г. -36 с.
- в) Интернет ресурсы:
- 1. сайт библиотеки ГГНТУ www. gsoi.ru/library;
- 2. Христианович С.А. Механика сплошной среды. 1981.djvu http://techlibrary.ru/
- 3. Селиванов В.В., Бабкин А.В. Прикладная механика сплошных сред. Том 1. 2004.djvu http://techlibrary.ru/

9. Материально-техническое обеспечение дисциплины

Поточные лекционные аудитории, оснащенные современными техническими средствами обучения (TCO). Класс с видеопроектором. Компьютерный класс.

 <u> ሰ</u>	ГO	DI	те	TI	₽•
	14	ВΝ			л.

Доцент кафедры «Прикладная механика и инженерная графика»

_/ М.А. Саидов

СОГЛАСОВАНО:

Зав., кафедрой «Прикладная механика

и инженерная графика»

// M.A. Саидов/

Зав. выпускающей каф.

«Технологические машины

и оборудование»

/Эльмурзаев А.А./

Директор ДУМР

/М.А. Магомаева