Документ подписан простой электронной подписью

Информация о владельце:

ФИО: МИНЦАЕРМИТИ СТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Ректор

Дата подписания: 08.09.2023 **16.8.03.НЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ**

236bcc35c296f119d6aafdc22836b21db52dbc07971a86865a5875f9fa43f14cc

РАБОЧАЯ ПРОГРАММА

дисциплины

«Строительные материалы»

Специальность

08.05.01 Строительство уникальных зданий и сооружений

Специализация

Строительство высотных и большепролетных зданий и сооружений

Квалификация

инженер-строитель

Год начала подготовки

2023

1. Цели и задачи дисциплины

Дисциплина «Строительные материалы» обеспечивает функциональную связь с базовыми дисциплинами и имеет своей целью:

- сформулировать у студентов представление о функциональной взаимосвязи материала и конструкции, предопределяющей выбор и оптимизацию свойств материала, исходя из назначения долговечности и условий эксплуатации конструкций;
- изучение составов, структуры и технологических основ получения материалов, с заданными функциональными свойствами с использованием природного и техногенного сырья, инструментальных методов контроля качества и сертификации на стадиях производства и потребления.

Задачи дисциплины:

- рассмотрение материалов как элементов системы материал конструкция, обеспечивающих функционирование конструкций с заданной надежностью и безопасностью;
- изучение способов создания материалов с требуемыми служебными свойствами, включающих соответствующий выбор сырья, утилизацию отходов, методов переработки и оценки их качества, технологических приемов формирования структуры;
- изучение системы показателей качества строительных материалов И нормативных методов ИХ определения оценки использованием современного исследовательского оборудования И статистической обработкой данных;
- показать возможности решения задач оптимизации свойств материалов, как элементов системы, программными средствами на компьютере.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Строительные материалы» относится к блоку дисциплин обязательной части. Данная дисциплина имеет логическую и содержательнометодическую взаимосвязь с другими частями ОП ВО. Для изучения курса требуется знание: физики, высшей математики, химии.

В свою очередь, данный курс, помимо самостоятельного значения, является предшествующей дисциплиной для курсов: функциональные основы проектирования зданий и сооружений, железобетонные и каменные конструкции (общий курс), металлические конструкции, включая сварку (общий курс), строительная физика, конструкции из дерева и пластмасс, Возведение монолитных и сборно-монолитных зданий.

3. Требования к результатам освоения дисциплины

В результате освоения дисциплины выпускник программы специалитета должен обладать следующими общепрофессиональными компетенциями:

ОПК-3 Способен принимать решения в профессиональной деятельности, используя теоретические основы, нормативно-правовую базу, практический опыт капитального строительства, а также знания о современном уровне его развития, в том числе -

ОПК-3.6_{ОПК-3} Составление перечней работ и ресурсов, необходимых для решения задачи в сфере профессиональной деятельности

ОПК-3.14_{ОПК-3} Определение качества строительных материалов на основе экспериментальных исследований их свойств

ОПК-3.15_{ОПК-3} Решение инженерно-геометрических задач графическими способами

4. Объем дисциплины «Строительные материалы» и виды учебной работы

		Всего	Семестры	
Вид учеб	часов/ зач.ед.	(ОФО)	n+1 (ОФО)	
				3
Контактная работа (всего	0)	115/3,19	67/1,86	48/1,33
В том числе:				
Лекции		66/1,84	34/0,94	32/0,88
Практические занятия		16/0,44		16/0,44
Лабораторные работы		33/0,91	33/0,91	
Самостоятельная работа	(всего)	173/4,8	90/2,5	83/2,3
В том числе:				
Рефераты		40/1,11	20/0,55	20/0,55
Презентации		40/1,11	20/0,55	20/0,55
И (или) другие виды самост	тоятельной работы:			
Подготовка к лабораторны	ім работам	30/0,83	30/0,83	
Подготовка к практически	Подготовка к практическим занятиям			23/0,63
Подготовка к отчетности	40/1,11	20/0,55	20/0,55	
Вид отчетности		зачет	экзамен	
Общая трудоемкость	ВСЕГО в часах	288	157	131
дисциплины	ВСЕГО в зач.	8	4,3	3,7
дисциплины	единицах	σ	7,3	3,1

5.Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины по семестрам	Часы Лекцион занятий	Часы Лаборатор ных занятий	Часы практических (семинарских) занятий	Всего часов
		2 ce	местр		
1.	Классификация строительных материалов	6	6		12
2.	Природные каменные материалы	4	4		8
3.	Гидратационные (неорганические) вяжущие вещества	6	4		10
4.	Портландцемент	6	6		12
5.	Бетон, железобетон и строительные растворы	6	6		12
6.	Стекло и стеклянные изделия	4	4		8
7.	Обжиговые искусственные каменные материалы	4	3		7
		3 ce	местр		
8.	Коагуляционные (органические) вяжущие материалы	4		2	6
9.	Теплоизоляционные материалы и изделия из них	4		2	6
10.	Гидроизоляционные материалы	4		2	6
11.	Древесные строительные материалы и изделия	6		4	10

	Металлы и	4		2	6
12.	металлические изделия				
13.	Отделочные материалы	6		2	8
	Полимерные				
14.	материалы	4		2	6
		66	33	16	115

5.2. Лекционные занятия

№ п/п	Наименование раздела дисциплины	Содержание раздела		
		2 семестр		
Общие положения 1.		Основные понятия. Основные свойства и классификация строительных материалов		
2.	Природные каменные материалы	2 Природные каменные материалы 2.1 Классификация и основные виды горных пород 2.2 Классификация и основные виды природных каменных материалов		
3.	Гидратационные (неорганические) вяжущие вещества	3. Гидратационные (неорганические) вяжущие вещества 4.Портландцемент		
4.	Бетон, железобетон и строительные растворы	4. Строительные растворы и бетоны		
5.	Стекло и стеклянные изделия	5. Стекло и стеклянные изделия		
6.	Искусственные обжиговые материалы	6. Искусственные обжиговые материалы 6.1 Керамические материалы и изделия из легкоплавких глин 6.2 Керамические материалы и изделия из тугоплавких глин		
	3 семестр			

	Коагуляционные	7. Коагуляционные (органические) вяжущие	
	(органические) вяжущие	материалы	
	материалы	7.1 Битумные материалы	
7.		7.2 Дёгтевые материалы	
		7.3 Асфальтовые растворы	
		7.4 Асфальтобетоны	
	Теплоизоляционные	8. Теплоизоляционные материалы и изделия из	
	материалы и изделия из них	них	
8.		8.1 Органические теплоизоляционные материалы	
		8.2 Неорганические теплоизоляционные	
		материалы	
	Гидроизоляционные	9.1 Кровельные материалы	
9.	материалы	9.2 Гидроизоляционные материалы	
	Древесные строительные	10 Древесные строительные материалы и изделия	
	материалы и изделия	10.1 Общие сведения	
10.		10.2 Материалы и изделия из древесины	
		10.2.1 Пиломатериалы	
		10.2.2 Древесные плиты	
	Металлы и металлические	11 Металлы и металлические изделия	
	изделия	11.1. Стальные строительные материалы и	
11.		изделия	
		11.2. Цветные металлы и сплавы	
		11.2.1 Коррозия металла и защита от неё	
12.	Отделочные материалы	12. Отделочные материалы	
	Полимерные материалы	13. Полимерные материалы	
		13.1 Исходные полимерные материалы	
13.		13.1.1 Пластиковые панели — панели ПВХ	
		13.1.2 Полимерные трубы	
		13.1.3 Полимерные мастики и бетоны	

5.3. Лабораторные занятия

№ п/п	Наименование раздела дисциплины	Наименование лабораторных работ			
	2 семестр				
	Классификация	Определение плотности, объемной массы, пористости и			
	строительных	водопоглощения на образцах различных материалов.			
1.	материалов	Определение соотношения между «открытыми» и			
		«условно-замкнутыми» порами. Определение предела			
		прочности на сжатие.			

	Бетон, железобетон и	Определение состава тяжелого бетона. Предварительные		
2.	строительные растворы	расчеты. Пробный замес. Определение подвижности и удобоукладываемости бетонной смеси. Определение марки бетона.		
3.	Теплоизоляционные материалы и изделия из них	Изучение свойств важнейших стеновых и отделочных материалов.		
4.	Древесные строительные материалы и изделия	Изучение макро- и микроструктуры древесины, ознакомление с образцами древесных пород. Ознакомление с важнейшими видами пороков древесины. Определение равновесной влажности. Определение предела прочности древесины хвойных пород		
5.	Природные каменные материалы	Природные каменные материалы Классификация и основные виды горных пород Классификация и основные виды природных каменных материалов		
6.	Гидратационные (неорганические) вяжущие вещества	Определение свойств строительной воздушной извести. Определение свойств гипсового камня от водогипсового соотношения		
7.	Гидратационные (неорганические) вяжущие вещества	Испытание цемента и определение нормальной густоты, равномерности и марки		

5.4.Практические занятия

№ п/п	Наименование раздела дисциплины	Содержание раздела			
	3 семестр				
		1 Классификация строительных материалов			
	Классификация	1.1 Свойства строительных материалов			
1.	строительных	1.2 Гидроизоляционные и кровельные материалы на			
	материалов	основе битумов и полимеров			
	Природные каменные	2 Природные каменные материалы			
2	материалы	2.1 Классификация и основные виды горных пород			
2.		2.2 Классификация и основные виды природных			
		каменных материалов			
	Разновидности	3 Портландцемент			
3.	портландцемента				

4.	Строительные растворы и бетоны	5 Строительные растворы
5.	Стекло и стеклянные изделия	6 Стекло и стеклянные изделия
6.	Обжиговые искусственные каменные материалы	6.1 Керамические материалы и изделия из легкоплавких глин 6.2 Керамические материалы и изделия из тугоплавких глин
7.	Искусственные обжиговые материалы	8 Искусственные обжиговые материалы 8.1 Керамические материалы и изделия из легкоплавких глин 8.2 Керамические материалы и изделия из тугоплавких глин
8.	Полимерные материалы	10 Полимерные материалы 10.1 Исходные полимерные материалы 10.1.1 Пластиковые панели — панели ПВХ 10.1.2 Полимерные трубы 10.1.3 Полимерные мастики и бетоны
9.	Теплоизоляционные материалы и изделия из них	11 Теплоизоляционные материалы и изделия из них 11.1 Органические теплоизоляционные материалы 11.2 Неорганические теплоизоляционные материалы

6. Самостоятельная работа студентов по дисциплине

Темы для рефератов и докладов

№№ п/п	Темы для рефератов и докладов		
1	Материалы и изделия из силикатных расплавов. Бетоны и строительные		
	растворы.		
2	Материалы и изделия на бесцементных вяжущих. Материалы и изделия на		
	основе магнезиальных вяжущих.		
3	Материалы растительного происхождения.		
4	Лакокрасочные и другие отделочные материалы.		
5	Безобжиговые искусственные каменные материалы и изделия на основе гидратационных вяжущих веществ		
6	Полимерные материалы		

Материально-техническое обеспечение для самостоятельной работы:

1. Микульский В.Г., Куприянов В.Н., Сахаров Г.П. и др.

Строительные материалы. М.: Изд-во АСВ, 2004.

- 2. Технология бетона. Учебник. Ю.М. Баженов М.: Изд-во АСВ, 2002.
- 3. Горчаков Г.И., Баженов Ю.И. Строительные материалы. М: Стройиздат, 1986.
- 4. Исмаилова З.Х., Саламанова М.Ш., Хадисов В.Х. Методические указания к выполнению контрольных работ по дисциплине «Материаловедение». Грозный: ГГНТУ, 2014г.-64с.
- 5. Исмаилова З.Х., Саламанова М.Ш., Нахаев М.Р. Учебное пособие по дисциплине «Строительные материалы и изделия» по направлению подготовки 08.03.01— Строительство (Гриф УМО) г. Грозный: ГГНТУ, 2018 г. -108с.
- 6.Успанова А.С. Исмаилова З.Х. Учебно-методическое пособие по дисциплине «Строительные дорожные материалы» по профилю подготовки 08.05.01 Строительство уникальных зданий и сооружений, специализации Строительство автомагистралей, аэродромов и специальных сооружений г. Грозный: ГГНТУ, 2019г. 118с.

7. Оценочные средства

Тесты, выносимые на 1-ю аттестацию по дисциплине «Строительные материалы»

- 1. Сырьём для изготовления керамических изделий служит: а) пески кварцевые; б) суглинки твердые; в) глинистые горные породы; г) все вместе.
- 2. Для улучшения технологических глин не добавляют: а) песок; б) шамот; в) шлак; г) известь.
- 3. В состав глин не входят оксиды: a) Al2O3; б)SiO2; в) Fe2O3; г) Ca (OH)2.
- 4. Наличие следующих оксидов повышает пористость изделий и как следствие снижает прочность: а) Fe2O3; б) SiO2; в) Na2O; г) AI2O3.
- 5.Соединение, понижающие огнеупорность глины: а) AI2O3; б) SiO2; в) Fe2O3; г) Na2O.
- 6. Прочность и морозостойкость глины уменьшает: а) Fe2O3; б) Ca CO3; в) AI2O3; г) Na2O.
- 7. Усадку глины можно уменьшив, добавив отощающие добавки в количестве: а) 6...10%; б) 2...6%; в) 10...14%; г) 1...20%.
- 8. В понятие усадки входят: а) воздушная усадка; б) огневая усадка; в) силовая усадка; г) водная усадка.
- 9. Полная усадка глины колеблется в пределах: а) 0...10%; б) 30...40%; в) 5-18%; г) 18-33%.

- 10. Воздушная усадка происходит от: а) влияние воздуха на поверхность глины; б) испарения воды от сырца; в) разности температур окружающего воздуха и в теле сырца; г) общего объёмного расширения.
- 11. При каких температурах глина утрачивает свою пластичность: а) 300...550 ОС; б) 200...400 ОС; в) 400...600 ОС; г) 550...800 ОС.
- 12. Спекание глины это: а) усадка, уплотнение и упрочнение глины; б) упрочнение и затвердение глины; в) трамбование, уплотнение и выдерживание глины; г) упрочнение и твердение глины.
- 13. Технологическая схема производства керамических изделий имеет следующую последовательность операции: а) 1.добыча сырья; 2.формование; 3.обжиг; 4.подготовка сырья; 5.сушка; б)1,4,2,5,3; в)1,5,3,2,4; г)2,1,3,5,4.
- 14. Стеклянные трубы получили широкое применение: а) в строительстве; б) в пищевой промышленности; в) в медицине; г) на предприятие с агрессивными средами.
- 15. Орнаментное стекло имеет: а) одну сторону гладкую; б) одну сторону гладкую, а вторую узорчатую; в) армирование; г) отражающий блеск.
- 16. Основным элементом стевита является: а) стекловолокнистый нетканевый холст; б) обычное строительное стекло; в) витринное стекло; г) стеклопакет.
- 17. Шлакоситаллы отличаются от ситаллов наличием в исходном сырье: а) шлака; б) кварцевого песка; в) мела и гипса; г) керамзита.
- 18. Основным компонентом строительного листового стекла является: а) кварцевый песок; б) известняк; в) хлористый кальций; г) доломит.
- 19. Для освещения лестничных клеток гражданских и промышленных зданий используют: а) стемалит; б) стеклянные блоки; в) стеклопакеты; Г) стевит.
- 20. Основным компонентом строительного листового стекла является: а) кварцевый песок; б) известняк; в) хлористый кальций; г) доломит.
- 21. Обычное стекло хорошо пропускает: а) состава стекла; б) тепловой обработки в процессе изготовления стекла; в) состояния поверхности; г) термоустойчивости.
- 22. Для увеличения температуры в помещении применяют: А) облицовочное стекло; б) теплопоглощающее стекло; в) профильное строительное стекло; г) витрасил.
- 23. Цветное армированное стекло не выпускают цвета: а)золотистожёлтого; б) зелёного или голубого; в) лилово-розового; г) серебристого.

- 24. Для наружной и внутренней облицовки панелей применяют: а) стеклянные трубы; б) витринное стекло; в) стеклянную коврово-мозаичную плитку; г) стемалит.
- 25. Шлакоситаллы получают: а) из обычного стекла путём варки в ванной печи; б) из материалов для каменного литья; в) из оргстекла; г) из кварцевого песка.

Тесты, выносимые на 2-ю аттестацию по дисциплине «Строительные материалы»

- 1. Для получения армированного стекла применяют: а) деревянные фибры; б) тонкую металлическую сетку; в) спиральную арматуру; г) тонкие канатные тросы.
- 2. Витринное стекло имеет: а) толщину 3...4мм и площадь до 5m^2 ; б) толщину 8...10мм и площадь до 10m^2 ; в) толщину 6...12мм и площадь 4- 12m^2 ; г) толщину 6...12м и площадь 4- 6m^2 .
- 3. Шлакоситаллы не обладают: а) высокой химической стойкостью; б) износостойкостью; в) твердостью; г) хрупким разрушением.
- 4. Стемалит не предназначен: а) для освещения помещения; б) наружной и внутренней облицовки; в) для изготовления многослойных панелей; г) для ограждения лестничных маршей и площадок.
- 5. Ситаллы получают: а) в результате полной или частичной карбонизации; б) полной гидратации составляющих; в) полной или частичной кристаллизации стекла; г) совместным помолом кварцевого песка и строительного стекла:
- 6. Каустический доломит состоит из минералов: A)Ca CO₃ и MqO; Ca CO₃; B) Mq CO₃; Γ) CaO · Mq CO₃.
- 7. Уравнение дегидратации воздушных вяжущих с образованием мелких кристаллов полуводного сернокислого кальция имеет вид: A)CaSO₄ · 2 H₂O = CaSO₄ · 0,5H₂O + 1,5 H₂O; Б) CaSO₄ · 2 H₂O = CaSO₄ · 1,5 H₂O + 0,5H₂O; Г) CaSO₄ · 2 H₂O = CaSO₄ · 2 H₂O
- 8. Высокообжиговый гипс получают обжигом природного гипса до температур: A)800-1000°C; Б)500...700°C; В)1000-1200°С; 300...500°С
- 9. Гидравлические вяжущие вещества твердеют: А)только в воде; Б)только на воздухе; В)на воздухе и воде; Г)Везде
- 10. Ангидритовый цемент имеет начало и конец схватывания соответственно: А)1 час и 24ч; Б)0,5ч и 12ч; В)30 и 24ч; Г)1ч и 48ч О
- 11. Воздушную известь получают гашением извести: А) магнезиальной; Б) диатомитовой; В) доломитовой; Г) кальциевой
- 12. Марки ангидритового цемента по прочности при сжатии: A)М 50; Б) М100; В) М150; Г) М200
- 13. Кислотоупорный цемент разрушается от воздействия: А) щелочей; Б) слабых кислот; В) серной кислоты; Г) воды
- 14. Воздушные вяжущие вещества твердеют: А)везде; Б)только на воздухе; В) в воде и на воздухе; Г)только в воде

- 15. Сырье для производства гипсовых вяжущих состоит из: А) гипсовый камень; Б) природный ангидрит; В) глина; Г) мергель
- 16. Низкообжиговый гипс получают нагреванием двуводного гипса (CASO₄·2H₂O) до температуры: A)200-220°C; Б)150-160°C; В)320-330°C; Γ)100-120°C
- 17. Основными свойствами низкообжиговых вяжущих веществ являются: А)сроки схватывания и тонкость помола; Б)прочность на сжатие и растяжение; В)водопотребность; Г)ползучесть
- 18. Гидравлические вяжущие вещества твердеют: А)везде; Б)только на воздухе; В)на воздухе и воде; Г)только в воде
- 19. Высокопрочный гипс разновидность: А)Полуводного гипса; Б)Двуводного гипса; В)Полуводного и двуводного гипса; Г)Природного гипса
- 20. Получают высокопрочный гипс при нагревании природного гипса паром при: А)давлении 0,2-0,3МПа и температуре 160-180°С; Б)давлении 0,2-0,3МПа и температуре 120-130°С; В)давлении 0,5-0,6 МПа и температуре 160-180°С; Г)давлении 0,5-0,6 МПа и температуре 12—130°С.

Тесты, выносимые на экзамен по дисциплине «Строительные материалы»

- 1. Сырьём для изготовления керамических изделий служит: а) пески кварцевые; б) суглинки твердые; в) глинистые горные породы; г) все вместе.
- 2. Для улучшения технологических глин не добавляют: а) песок; б) шамот; в) шлак; г) известь.
 - 3. В состав глин не входят оксиды: a) Al₂O₃; б)SiO₂; в) Fe₂O₃; г) Са (OH)₂.
- 4. Наличие следующих оксидов повышает пористость изделий и как следствие снижает прочность: а) Fe_2O_3 ; б) SiO_2 ; в) Na_2O ; г) AI_2O_3 .
- 5. 5.Соединение, понижающие огнеупорность глины: а) AI_2O_3 ; б) SiO_2 ; в) Fe_2O_3 ; г) Na_2O .
- 6. Прочность и морозостойкость глины уменьшает: а) Fe_2O_3 ; б) Са CO_3 ; в) AI_2O_3 ; г) Na_2O .
- 7. Усадку глины можно уменьшив, добавив отощающие добавки в количестве: a) 6...10%; б) 2...6%; в) 10...14%; г) 1...20%.
- 8. В понятие усадки входят: а) воздушная усадка; б) огневая усадка; в) силовая усадка; г) водная усадка.
- 9. Полная усадка глины колеблется в пределах: a) 0...10%; б) 30...40%; в) 5-18%; г) 18-33%.
- 10. Воздушная усадка происходит от: а) влияние воздуха на поверхность глины; б) испарения воды от сырца; в) разности температур окружающего воздуха и в теле сырца; г) общего объёмного расширения.
- 11. При каких температурах глина утрачивает свою пластичность: а) $300...550~^{0}$ C; б) $200...400~^{0}$ C; в) $400...600~^{0}$ C; г) $550...800~^{0}$ C.
- 12. Спекание глины это: а) усадка, уплотнение и упрочнение глины; б) упрочнение и затвердение глины; в) трамбование, уплотнение и выдерживание глины; г) упрочнение и твердение глины.

- 13. Технологическая схема производства керамических изделий имеет следующую последовательность операции: а) 1.добыча сырья; 2.формование; 3.обжиг; 4.подготовка сырья; 5.сушка; б)1,4,2,5,3; в)1,5,3,2,4; Γ)2,1,3,5,4.
- 14. Стеклянные трубы получили широкое применение: а) в строительстве; б) в пищевой промышленности; в) в медицине; г) на предприятие с агрессивными средами.
- 15. Орнаментное стекло имеет: а) одну сторону гладкую; б) одну сторону гладкую, а вторую узорчатую; в) армирование; г) отражающий блеск.
- 16. Основным элементом стевита является: а) стекловолокнистый нетканевый холст; б) обычное строительное стекло; в) витринное стекло; г) стеклопакет.
- 17. Шлакоситаллы отличаются от ситаллов наличием в исходном сырье: а) шлака; б) кварцевого песка; в) мела и гипса; г) керамзита.
- 18. Основным компонентом строительного листового стекла является: а) кварцевый песок; б) известняк; в) хлористый кальций; г) доломит.
- 19. Для освещения лестничных клеток гражданских и промышленных зданий используют: а) стемалит; б) стеклянные блоки; в) стеклопакеты; Г) стевит.
- 20. Основным компонентом строительного листового стекла является: а) кварцевый песок; б) известняк; в) хлористый кальций; г) доломит.
- 21. Обычное стекло хорошо пропускает: а) состава стекла; б) тепловой обработки в процессе изготовления стекла; в) состояния поверхности; г) термоустойчивости.
- 22. Для увеличения температуры в помещении применяют: А) облицовочное стекло; б) теплопоглощающее стекло; в) профильное строительное стекло; г) витрасил.
- 23. Цветное армированное стекло не выпускают цвета: а)золотистожёлтого; б) зелёного или голубого; в) лилово-розового; г) серебристого.
- 24. Для наружной и внутренней облицовки панелей применяют: а) стеклянные трубы; б) витринное стекло; в) стеклянную коврово-мозаичную плитку; г) стемалит.
- 25. Шлакоситаллы получают: а) из обычного стекла путём варки в ванной печи; б) из материалов для каменного литья; в) из оргстекла; г) из кварцевого песка.
- 26. Для получения армированного стекла применяют: а) деревянные фибры; б) тонкую металлическую сетку; в) спиральную арматуру; г) тонкие канатные тросы.
- 27. Витринное стекло имеет: а) толщину 3...4мм и площадь до 5м^2 ; б) толщину 8...10мм и площадь до 10м^2 ; в) толщину 6...12мм и площадь 4- 12m^2 ; г) толщину 6...12м и площадь 4- 6m^2 .

- 28. Шлакоситаллы не обладают: а) высокой химической стойкостью; б) износостойкостью; в) твердостью; г) хрупким разрушением.
- 29. Стемалит не предназначен: а) для освещения помещения; б) наружной и внутренней облицовки; в) для изготовления многослойных панелей; г) для ограждения лестничных маршей и площадок.
- 30. Ситаллы получают: а) в результате полной или частичной карбонизации; б) полной гидратации составляющих; в) полной или частичной кристаллизации стекла; г) совместным помолом кварцевого песка и строительного стекла:
- 31. Каустический доломит состоит из минералов: A)Ca CO₃ и MqO; Ca CO₃; B) Mq CO₃; Γ) CaO · Mq CO₃.
- 32. Уравнение дегидратации воздушных вяжущих с образованием мелких кристаллов полуводного сернокислого кальция имеет вид: A)CaSO₄ \cdot 2 H₂O = CaSO₄ \cdot 0,5H₂O + 1,5 H₂O; Б) CaSO₄ \cdot 2 H₂O = CaSO₄ \cdot 1,5 H₂O + 0,5H₂O; Г) CaSO₄ \cdot 2 H₂O = CaSO₄ \cdot 2 H₂O
- 33. Высокообжиговый гипс получают обжигом природного гипса до температур: A)800-1000°C; Б)500...700°C; В)1000-1200°C; 300...500°C
- 34. Гидравлические вяжущие вещества твердеют: А)только в воде; Б)только на воздухе; В)на воздухе и воде; Г)Везде
- 35. Ангидритовый цемент имеет начало и конец схватывания соответственно: A)1 час и 24ч; Б)0,5ч и 12ч; В)30 и 24ч; Г)1ч и 48ч О
- 36. Воздушную известь получают гашением извести: А) магнезиальной; Б) диатомитовой; В) доломитовой; Г) кальциевой
- 37. Марки ангидритового цемента по прочности при сжатии: A)М 50; Б) М100; В) М150; Г) М200
- 38. Кислотоупорный цемент разрушается от воздействия: А) щелочей; Б) слабых кислот; В) серной кислоты; Г) воды
- 39. Воздушные вяжущие вещества твердеют: А)везде; Б)только на воздухе; В) в воде и на воздухе; Г)только в воде
- 40. Сырье для производства гипсовых вяжущих состоит из: А) гипсовый камень; Б) природный ангидрит; В) глина; Г) мергель
- 41. Низкообжиговый гипс получают нагреванием двуводного гипса (CASO₄·2H₂O) до температуры: A)200-220°C; Б)150-160°C; В)320-330°C; Γ)100-120°C
- 42. Основными свойствами низкообжиговых вяжущих веществ являются: А)сроки схватывания и тонкость помола; Б)прочность на сжатие и растяжение; В)водопотребность; Г)ползучесть
- 43. Гидравлические вяжущие вещества твердеют: А)везде; Б)только на воздухе; В)на воздухе и воде; Г)только в воде
- 44. Высокопрочный гипс разновидность: А)Полуводного гипса; Б)Двуводного гипса; В)Полуводного и двуводного гипса; Г)Природного гипса
- 45. Получают высокопрочный гипс при нагревании природного гипса паром при: А)давлении 0,2-0,3МПа и температуре 160-180°С;

Б)давлении 0,2-0,3МПа и температуре 120-130°C; В)давлении 0,5-0,6 МПа и температуре 160-180°C; Г)давлении 0,5-0,6 МПа и температуре 12—130°C.

Образец

Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова

		TA C	1
Бил	TOT	N_0	
IJVIJ	101	710	

по 1-ой рубежной аттестации студентов группы _____ по дисциплине «Строительные материалы» 3 семестр

- 1. Коррозия цемента и способы защиты от коррозии.
- 2. Управление структурой материалов для получения заданных свойств

Зав. кафедрой «ТСП», проф.

С.-А. Ю. Муртазаев

Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова

Билет № 1

по 2-ой рубежной аттестации студентов группы ______ по дисциплине «Строительные материалы» 3 семестр

- 1. Виды сталей, применяемых в строительстве. Изделия из них
- 2. Древесина. Физические и механические свойства

Зав. кафедрой «ТСП», проф.

С.-А. Ю. Муртазаев

Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова

Билет № 1

на экзамен для студентов группы _____ по дисциплине «Строительные материалы» 3 семестр

- 1. Виды сталей, применяемых в строительстве. Изделия из них.
- 2. Способы защиты от пороков.
- 3. Теплоизоляционные материалы.

Зав. кафедрой «ТСП», проф.

С.-А. Ю. Муртазаев

Текущий контроль

Тестовые задания

Билет №1

по дисциплине «Строительные материалы» на экзамен

- 1. Марки ангидритового цемента по прочности при сжатии: А)М 50; Б) М100; В) М150; Г) М200
- 2. Кислотоупорный цемент разрушается от воздействия: А) щелочей; Б) слабых кислот; В) серной кислоты; Г) воды
- 3. Воздушные вяжущие вещества твердеют: А)везде; Б)только на воздухе; В) в воде и на воздухе; Г)только в воде
- 4. Сырьём для изготовления керамических изделий служит: а) пески кварцевые; б) суглинки твердые; в) глинистые горные породы; г) все вместе
- 5. Прочность и морозостойкость глины уменьшает: а) Fe_2O_3 ; б) Са CO_3 ; в) AI_2O_3 ; г) Na_2O
- 6. Ангидритовый цемент имеет начало и конец схватывания соответственно: А)1 час и 24ч; Б)0,5ч и 12ч; В)30 и 24ч; Г)1ч и 48ч
- 7. Уравнение дегидратации воздушных вяжущих с образованием мелких кристаллов полуводного сернокислого кальция имеет вид: A)CaSO₄ · 2 $H_2O = CaSO_4 \cdot 0,5H_2O + 1,5 H_2O$; Б) CaSO₄ · 2 $H_2O = CaSO_4 H_2O + H_2O$; В) CaSO₄ · 2 $H_2O = CaSO_4 \cdot 1,5 H_2O + 0,5H_2O$; Г) CaSO₄ · 2 $H_2O = CaSO_4 \cdot 2 H_2O = CaSO_4 \cdot 2 H_2O$
- 8. Для освещения лестничных клеток гражданских и промышленных зданий используют: а) стемалит; б) стеклянные блоки; в) стеклопакеты; Г) стевит
- 9. Стеклянные трубы получили широкое применение: а) в строительстве; б) в пищевой промышленности; в) в медицине; г) на предприятие с агрессивными средами
- 10. Основным компонентом строительного листового стекла является: а) кварцевый песок; б) известняк; в) хлористый кальций; г) доломит.

Зав.каф. «ТСП»

С-А. Ю. Муртазаев

Учебно-методическое и информационное обеспечение дисциплины

а) основная литература

- 1. Микульский В.Г., Куприянов В.Н., Сахаров Г.П. и др. Строительные материалы. М.: Изд-во АСВ, 2004. 536с .(библиотека кафедры)
- 2. Технология бетона. Учебник. Ю.М. Баженов М.: Изд-во ACB, 2002. 524с. (библиотека кафедры)
- 3. Домокеев А. Г. Строительные материалы. Учебник. М.: Высш. школа, 2002. 383с. (библиотека ГГНТУ).
- 4.Сидоренко Ю. В. Строительные материалы: учебное пособие / Ю. В. Сидоренко, С. Ф. Коренькова. Самара.: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2008. 88 с. (ЭБС «IPRbooks»)
- 5.Основин, В. Н. Строительные материалы и изделия: учебное пособие / В. Н. Основин, Л. В. Шуляков. Минск.: Вышэйшая школа, 2009. 224с.(ЭБС «IPRbooks»)
- 6.Орлова А. М. Физико-химические методы анализа строительных материалов: учебное пособие / А. М. Орлова, И. П. Романова. Москва: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2016. -205с. (ЭБС «IPRbooks»)
- 7.Ильина Л. В. Вяжущие вещества. Материалы и изделия на их основе для дорожного строительства: учебное пособие / Л. В. Ильина, О. А. Игнатова, Т. Ф. Каткова. Новосибирск.: Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2017. -189 с. (ЭБС «IPRbooks»)
- 8. Баженов Ю.М., Алимов Л.А., Воронин В.В., Магдеев У.Х. Технология бетона, строительных изделий и конструкций. -М.: Изд-во АСВ, 2008. 350с. (библиотека ГГНТУ)

б) дополнительная литература

- 1.Кукса П. Б. Классификации и свойства строительных материалов: учебное пособие / П. Б. Кукса. Санкт-Петербург.: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2016. 56с. (ЭБС «IPRbooks»)
- 2.Производство строительных материалов, изделий и конструкций : учебное пособие / О. Ю. Баженова, В. И. Сохряков, К. С. Стенечкина, С. И. Баженова. 3-е изд. Москва.: МИСИ-МГСУ, ЭБС АСВ, 2019. 160с. (ЭБС «IPRbooks»)

- 3.Широкий Г. Т. Строительные материалы и изделия : учебное пособие / Г. Т. Широкий, М. Г. Бортницкая. Минск.: Республиканский институт профессионального образования (РИПО), 2020. 432с.(ЭБС «IPRbooks»)
- 4. Горбунов Г. И. Научные основы формирования структуры и свойств строительных материалов : монография / Г. И. Горбунов, А. Д. Жуков. Москва.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2016. 555с.(ЭБС «IPRbooks»)
- 5. Дворкин Л. И. Справочник по строительному материаловедению: учебно-практическое пособие / Л. И. Дворкин, О. Л. Дворкин. Москва.: Инфра-Инженерия, 2013. 472с.(ЭБС «IPRbooks»)

в) интернет- ресурсы

- 6. 3EC «IPRbooks http://www.iprbookshop.ru/
- 7. ЭБС «Консультант студента»
- 8.«Российское образование» федеральный портал http://www.edu.ru/index.php
 - 9. Научная электронная библиотека http://elibrary.ru/defaultx.asp
- 10.Федеральная университетская компьютерная сеть России http://www.runnet.ru/

9. Материально-техническое обеспечение дисциплины

Научно-технический центр коллективного пользования «Современные строительные материалы и технологии» ГГНТУ, оснащенная современным необходимым для проведения лабораторных занятий оборудованием и класс с персональными компьютерами.

составитель:

доцент кафедры «ТСП »

3.Х. Исмаилова

СОГЛАСОВАНО:

Зав. кафедрой « ТСП»

С-А. Ю. Муртазаев

Зав. выпускающей каф. «ТСП»

С-А. Ю. Муртазаев

Директор ДУМР

М. А. Магомаева