Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Минцаев Магомед Шавалович

Должность: Ректор

Дата подписания: **МИНИСЖЕРС**ТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный кл 236bcc35c296f119d6aafdc22 ОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика М.Д. Миллионщикова

РАБОЧАЯ ПРОГРАММА

дисциплины

ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В химии

Направление подготовки

18.04.01. Химическая технология

Направленность (профиль)

Химическая технология органических веществ

Химическая технология природных энергоносителей и углеродных материалов

Квалификация

Магистр

1. Цель и задачи освоения дисциплины

Цель дисциплины: подготовка выпускников к междисциплинарным научным исследованиям в области химической технологии, интегрированию новых идей, применению математических, физических и специальных знаний и умений к решению инновационных задач, связанных с разработкой химико-технологических процессов, веществ и материалов, оборудования

Задачи освоения дисциплины: подготовка выпускника к научной и производственно-технологической деятельности, поиску и получению новой информации, необходимой для решения инженерных задач в области химической технологии, интеграции знаний применительно к профессиональной деятельности

2. Место дисциплины в структуре ОП

Дисциплина «Теоретические и экспериментальные методы исследования в химии»» относится к базовой части общенаучного цикла ОП «Химическая технология» и является обязательной для изучения.

Для успешного освоения курса данной дисциплины обучающийся должен обладать удовлетворительными знаниями, полученными при изучении дисциплин «Общая и неорганическая химия», «Органическая химия» и «Аналитическая химия и физико-химических методы анализа» на уровне бакалаврской подготовки. Необходимый минимум знаний по указанным дисциплинам определяется при выполнении входного тестирования на первом практическом занятии. В случае неудовлетворительного результата входного контроля обучающийся получает рекомендации для восполнения утраченных знаний.

3. Требования к результатам освоения дисциплины

В процессе освоения дисциплины «Теоретические и экспериментальные методы исследования в химии» магистрант при освоении ОП ВО, реализующей ФГОС3+ ВО, формирует и демонстрирует следующие компетенции:

- -способность к профессиональному росту, к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности (ОК- 5);
- -способность к профессиональной эксплуатации современного оборудования и приборов в соответствии с направлением и профилем подготовки (ОПК- 3);
- -способность использовать современные приборы и методики, организовывать проведение экспериментов и испытаний, проводить их обработку и анализировать их результаты (ПК-3);

В результате освоения дисциплины «Теоретические и экспериментальные методы исследования в химии» обучающийся должен:

знать:

- современные приборы и методики для проведения экспериментов и испытаний, обработки и анализа их результатов (ПК-3);

уметь:

- профессионально эксплуатировать современное оборудование и приборы в соответствии с направлением и профилем подготовки (ОПК- 3);

владеть:

-способностью к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности (ОК- 5);

4. Объем дисциплины и виды учебной работы

Таблица 1

Вид учебной работы		Всего часов		Семестр	
		ОФО	ОЗФО	ОФО	ОЗФО
				2	2
Аудиторные занятия (всего)		42/1,17	45/1,25	42/1,17	45/1,25
В том числе:					
Лекции		14/0,39	15/0,42	14/0,39	15/0,42
Практические занятия (ПЗ)		28/0,78	30/0,83	28/0,78	30/0,83
Лабораторные работы (ЛР)					
Самостоятельная работа (всего)		102/2,83	99/2,75	102/2,83	99/2,75
В том числе:					
Контрольная работа					
Реферат		46/1,28	35/0,97	46/1,28	35/0,97
Подготовка к лабораторным работам					
Подготовка к практическим занятиям		28/0,78	28/0,78	28/0,78	28/0,78
Подготовка к зачету		28/0,78	36/1	28/0,78	36/1
Подготовка к экзамену					
Вид отчетности		зачет	зачет	зачет	зачет
Общая трудоемкость	Всего	144	144	144	144
	в часах			144	
дисциплины	Всего	2	2	2	2
	в зач. ед.	2		2	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Таблица 2

№ п/п	Наименование раздела дисциплины по семестрам	Лекц. зан. часы	Лабор. зан. часы	Практ зан. часы	Всего часов
1.	Обзор методов, используемых для исследования органических веществ	2	-	ı	2
2.	Молекулярная спектроскопия	2	-	-	2
3.	ИК-спектроскопия	2	-	-	2
4.	Спектроскопия ядерного магнитного резонанса	2	-	-	2
5.	Масс-спектрометрия	2	-	-	2
6.	Хроматографические методы разделения	2	-	14	16
7.	Хроматографический метод анализа нефтепродуктов	2	-	14	16

5.2. Лекционные занятия

Таблица 3

№ п/п	Наименование разделов дисциплины	Содержание раздела
1	2	3
1	Обзор методов, используемых для исследования органических веществ	Физико-химические константы углеводородов нефти и их роль в идентификации компонентов углеводородных смесей. Планирование эксперимента
2	Молекулярная спектроскопия	Электромагнитный спектр. УФ-спектроскопия. Важнейшие характеристические полосы поглощения в области основных частот колебаний органических молекул. УФ-спектроскопия и спектрофотометрия. Законы поглощения света. Приборы и элементы экспериментальной техники в фотохимии: УФ-спектрометы, спектрофотометры. Спектры поглощения основных классов органических соединений в УФ- области.
3	ИК-спектроскопия	Электромагнитный спектр. ИК-спектроскопия. Важнейшие характеристические полосы поглощения в области основных частот колебаний органических молекул. Инфракрасная спектроскопия. Физические основы. Основные принципы ИК эксперимента. Приборы и элементы в инфракрасной спектроскопии ИК-сигналы основных функциональных групп органических соединений. Особенности расшифровки спектров.
4	Спектроскопия ядерного магнитного резонанса	ЯМР-спектроскопия. Явление ядерного магнитного резонанса. Основные параметры спектров ЯМР ¹ Н (химический сдвиг, константа спинового взаимодействия, интегральная интенсивность сигнала). Спектроскопия ядерного магнитного резонанса ядер ¹³ С.
5	Масс-спектрометрия	Общие положения метода масс-спектрометрии. Основные правила и подходы к интерпретации масс-спектров.
6	Хроматографические методы разделения	Теоретические основы хроматографического разделения. Классификация и краткая характеристика методов хроматографии. Фронтальный, проявительный и вытеснительный анализ
7	Хроматографический метод анализа нефтепродуктов	Качественный и количественный методы анализа в хроматографии. Газовая и жидкостно-адсорбционная хроматография. Хроматограммы

5.3. Практические занятия

Таблица 4

$N_{\underline{0}}$	Наименование разделов	Содержание раздела
Π/Π	дисциплины	
1	2	3
1	Обзор методов,	Семинар- обсуждение «Аналитический обзор
	используемых для	современных методов исследования углеводородных
	исследования	систем»
	органических веществ	
6	Хроматографические	Классификация поагрегатному состоянию фаз и методике
	методы разделения	проведения эксперимента. Принципы и физико-
		химические основы молекулярной абсобционной,
		газовой, распределительной жидкостной хроматографии.
7	Хроматографический	Особенности методов, аппаратура, качественный и
	метод анализа	количественный анализ газов и бензинов.
	нефтепродуктов	

5.4. Лабораторный практикум (не предусмотрен).

6. Самостоятельная работа магистрантов по дисциплине

Самостоятельная (внеаудиторная) работа магистрантов состоит в проработке лекционного материала, пополнении конспекта лекций табличными и спектральными данными, проработки тем, вынесенных на самостоятельное изучение, подготовке к лабораторным (семинарским) занятиям. Она составляет 44 часа и включает следующие пункты:

- 1) самостоятельное изучение отдельных тем дисциплины;
- 2) подготовка к практическим занятиям;
- 3) подготовка к зачету;
- 4) подготовка рефератов.

6.1 Творческая проблемно-ориентированная самостоятельная работа

(TCP) магистранта состоит в дополнении лекционного материала последними научными достижениями из рассматриваемой области. Необходимую информацию обучающийся черпает из предложенных преподавателем оригинальных статей по данной теме и информационных источников Internet-ресурсов.

6.2 Содержание самостоятельной работы

Таблица 5

№	Наименование	Содержание раздела		
Π/Π	раздела дисциплины			
1.	ИК-спектроскопия	(Валентные и деформационные колебания; Важнейшие		
		характеристические полосы поглощения в области		
		основных частот колебаний органических молекул		
2.	Спектроскопия ядерного	(Явление ядерного магнитного резонанса; Протонный		
	магнитного резонанса	магнитный резонанс; Химический сдвиг; Магнитная		
		неэквивалентность; Факторы, влияющие на химический		
		сдвиг; Спин-спиновое взаимодействие; Правило		

		мультиплетности; Константа спин-спинового взаимодействия; Химический обмен; Конформационный обмен; Интегральная интенсивность сигнала ПМР; Спектроскопия ядерного магнитного резонанса ядер ¹³ С.
3.	Масс-спектрометрия	(Основные правила и подходы к интерпретации масс- спектров; Концепция стабильности ионов и нейтральных частиц; Концепция локализации заряда и неспаренного электрона)
4.	Основы хроматографических методов.	(Газо-жидкостная хроматография (ГЖХ); Аппаратурное оформление метода ГЖХ; Идентификация методом ГЖХ; Количественный анализ с использованием метода ГЖХ; Высокоэффективная жидкостная хроматография (ВЭЖХ); Жидкостно-адсорбционная хроматография; Жидкостная-жидкостная (распределительная) хроматография (ЖЖХ); Тонкослойная хроматография (ТСХ); Основные правила идентификации с помощью ТСХ-анализа; Методы визуализации хроматографической картины; Препаративная колоночная хроматография).

6.3 Контроль самостоятельной работы

Контроль за текущей СР осуществляется на практических занятиях (в форме ответвопрос) и выполнения рубежного контроля.

Контроль за проработкой лекционного материала и самостоятельного изучения отдельных тем осуществляется во время практических занятий при решении заданий.

6.4. Темы рефератов

- 1. Протонный магнитный резонанс;
- 2.Химический сдвиг; Магнитная неэквивалентность; Факторы, влияющие на химический сдвиг;
- 3.Спин-спиновое взаимодействие; Правило мультиплетности; Константа спин-спинового взаимодействия;
- 4. Химический обмен; Конформационный обмен; Интегральная интенсивность сигнала ПМР;
- 5. Спектроскопия ядерного магнитного резонанса ядер ¹³C.
- 6. Газо-жидкостная хроматография (ГЖХ); Аппаратурное оформление метода ГЖХ;
- 7. Идентификация методом ГЖХ;
- 8. Количественный анализ с использованием метода ГЖХ;
- 9. Высокоэффективная жидкостная хроматография (ВЭЖХ);
- 10. Жидкостно-адсорбционная хроматография;
- 11. Жидкостная-жидкостная (распределительная) хроматография (ЖЖХ); Тонкослойная хроматография (ТСХ);
- 12.Основные правила идентификации с помощью ТСХ-анализа;
- 13. Методы визуализации хроматографической картины;
- 14. Препаративная колоночная хроматография.

6.5. Учебно-методическое обеспечение самостоятельной работы студентов

- 1. Сильверстейн Р., Вебетер Ф., Кимл Д. Спектрометрическая идентификация органических соединений. М.: БИНОМ. Лаборатория знаний, 2011. 520 с.
- 2. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир. -2006. -439с.
- 3. Беккер Ю. Хроматография. Инструментальная аналитика: методы хроматографии и капиллярного электрофореза. –М.: ТЕХНОСИЛА. 2009. -470 с.
- 4. Краснокутская Е.А. Физико-химические методы анализа биологически активных веществ. Томск: -2005. -142с.
- 5. Казицина А.А.. Куплетская Н.Б. Применение Ик_ УФ- И ЯМР-мектроскопии в органической химии. –М.: Высшая школа. 1971. -263с.
- 6. Сайт электронных учебников и пособий по химии, в том числе, физико-химическим методам анализа органических веществ: http://www.rushim.ru/books/books.htm

7. Фонды оценочных средств

Фонд оценочных средств дисциплины включает в себя:

- вопросы к первой промежуточной аттестации;
- вопросы ко второй промежуточной аттестации;
- вопросы к зачету;
- образец билета.

7.2. Вопросы к зачету

- 1. Какие типы химической связи Вам известны?
- 2. Какой тип гибридизации атома углерода имеет место в молекуле ацетилена?
- 3. В какой области УФ-спектра следует ожидать полосу поглощения, обусловленную наличием карбонильного хромофора в молекуле органического соединения.
- 4. Как определить концентрацию раствора по его оптической плотности?
- 5. УФ-спектроскопия и спектрофотометрия. Законы поглощения света.
- 6.Приборы и элементы экспериментальной техники в фотохимии: УФ- спектрометы, спектрофотометры.
- 7.Спектры поглощения основных классов органических соединений в УФ- области.
- 8.Инфракрасная спектроскопия. Физические основы.
- 9.Основные принципы ИК эксперимента. Приборы и элементы в инфракрасной спектроскопии
- 10.ИК-сигналы основных функциональных групп органических соединений. Особенности расшифровки спектров.
- 11. Физические основы спектроскопии ЯМР.
- 12.Основные принципы эксперимента ЯМР. Импульсный метод ЯМР, характеристики импульсов. Импульсный спектрометр ЯМР.
- 13. Параметры спектров ЯМР. Химический сдвиг, константа экранирования. Спинспиновое взаимодействие. Интенсивности сигналов.
- 14. Химсдвиги ¹³С для органических молекул.
- 15. Эксперименты двойного резонанса: их применение.
- 16. Газожидкостная хроматография. Теоретические основы хроматографии.
- 17. Принципиальная схема газового хроматографа.
- 18. Детекторы в газовой хроматографии.
- 19. Качественный и количественный методы анализа в хроматографии.

- 20. Хроматографический метод анализа бензинов.
- 21. Масс-спектрометрия. Физические основы метода.
- 22. Устройство простейшего масс-спектрометра.
- 23. Масс-спектры отдельных классов органических соединений.
- 24. Приведите методы определения воды в нефтях и нефтепродуктах.
- 25. Приведите способы анализа кислот и щелочей в нефтепродуктах.
- 26. Методы анализа ароматических углеводородов, входящих в состав нефти.

7.3. Примерный билет к зачету

Образец билета к зачету

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

имени академика М. Д. Миллионщикова БИЛЕТ №1

Дисциплина Теоретические и экспериментальные методы исследования в химии

Институт нефти и газа Направление Химическая технология

Билет №1

- 1. Законы поглощения света
- 2. Масс-спектрометрия. Физические основы метода. Устройство простейшего масс-спектрометра.
- 3. Детекторы в газовой хроматографии

8. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Чемоданов А.Е.Групповой состав нефти и методы его изучения / А.Е. Чемоданов, А.В.Вахин, С.А. Ситнов, Д.А. Феоктистов Казань: Казанский федеральный университет, 2018.-21 с.
- 2. Сильверстейн Р., Вебетер Ф., Кимл Д. Спектрометрическая идентификация органических соединений. М.: БИНОМ. Лаборатория знаний, 2011. 520 с. ЭБС «Консультант студента»
- 3. Рябов В.Д. Химия нефти и газа: учебное пособие. –М.: ИД «ФОРУМ», 2009.-336 с,: ил. (Высшее образование)- Имеется на кафедре

б) дополнительная литература:

- 1. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир. -2006. -439с.
- 2. Беккер Ю. Хроматография. Инструментальная аналитика: методы хроматографии и капиллярного электрофореза. –М.: ТЕХНОСИЛА. 2009. -470 с.
- 3. Лебедев, А. Т. Масс-спектрометрия в органической химии. М. : БИНОМ. Лаборатория знаний, 2003. 493 с.

в) программное и коммуникационное обеспечение

- 1. Электронный конспект лекций
- 2. Электронно-библиотечная система Консультант студента

- 3. Электронно-библиотечная система lanbook.ru/
- 4. Нефтегазовые технологии http://neft-gaz-novacii.ru/ru/archive
- 5. Нефть и газ; на веб-сайте разработчика: http://nglib-free.ru/);
- 6. Научная электронная библиотека elibrary.ru
- 7. Патентная база QUESTELPATENTQPAT http://www.orbit.com/#WelcomePage

9. Материально-техническое обеспечение дисциплины

Для чтения лекций предусмотрено использование аудитории, оснащенной проектором.

Лаборатория для проведения исследования нефтей и анализа качества нефтепродуктов, содержащая: установка для определения активности катализаторов крекинга МАК-10, хроматограф Кристалюкс 4000М для определения состава бензинов и углеводородов газа, лабораторные столы, вытяжной шкаф, весы аналитические AR 2140 «OHAUS», генератор водорода.-

Составитель:

Доцент кафедры «Химическая технология нефти и газа»

AN

/Абдулмежидова З.А./

СОГЛАСОВАНО:

Зав. кафедрой «ХТНГ»

Зав. выпускающей кафедрой

Директор ДУМР

/Махмудова Л.Ш./

/Махмудова Л.Ш./

/Магомаева М.А./